| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgeq1f.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | itgeq1f.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 | 1 2 | nfeq | ⊢ Ⅎ 𝑥 𝐴  =  𝐵 | 
						
							| 4 |  | eleq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 5 | 4 | anbi1d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 )  ↔  ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ) ) | 
						
							| 6 | 5 | ifbid | ⊢ ( 𝐴  =  𝐵  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 7 | 6 | csbeq2dv | ⊢ ( 𝐴  =  𝐵  →  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  =  𝐵  ∧  𝑥  ∈  ℝ )  →  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 )  =  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 9 | 3 8 | mpteq2da | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝐴  =  𝐵  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( 𝐴  =  𝐵  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) ) | 
						
							| 12 | 11 | sumeq2sdv | ⊢ ( 𝐴  =  𝐵  →  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) ) | 
						
							| 13 |  | df-itg | ⊢ ∫ 𝐴 𝐶  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 14 |  | df-itg | ⊢ ∫ 𝐵 𝐶  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) ) | 
						
							| 15 | 12 13 14 | 3eqtr4g | ⊢ ( 𝐴  =  𝐵  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 𝐶  d 𝑥 ) |