| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgeq1f.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | itgeq1f.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | eqid | ⊢ ℝ  =  ℝ | 
						
							| 4 | 1 2 | nfeq | ⊢ Ⅎ 𝑥 𝐴  =  𝐵 | 
						
							| 5 |  | eleq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 6 | 5 | anbi1d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) )  ↔  ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 7 | 6 | ifbid | ⊢ ( 𝐴  =  𝐵  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 8 | 7 | a1d | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ∈  ℝ  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 9 | 4 8 | ralrimi | ⊢ ( 𝐴  =  𝐵  →  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 10 |  | mpteq12 | ⊢ ( ( ℝ  =  ℝ  ∧  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 11 | 3 9 10 | sylancr | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝐴  =  𝐵  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝐴  =  𝐵  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) ) | 
						
							| 14 | 13 | sumeq2sdv | ⊢ ( 𝐴  =  𝐵  →  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 16 | 15 | dfitg | ⊢ ∫ 𝐴 𝐶  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 17 | 15 | dfitg | ⊢ ∫ 𝐵 𝐶  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 18 | 14 16 17 | 3eqtr4g | ⊢ ( 𝐴  =  𝐵  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 𝐶  d 𝑥 ) |