| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ℝ  =  ℝ | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 3 | 2 | con3i | ⊢ ( ¬  𝑥  ∈  𝐴  →  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ) | 
						
							| 4 | 3 | iffalsed | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  0 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 6 | 5 | con3i | ⊢ ( ¬  𝑥  ∈  𝐴  →  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ) | 
						
							| 7 | 6 | iffalsed | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  0 ) | 
						
							| 8 | 4 7 | eqtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 9 |  | fvoveq1 | ⊢ ( 𝐵  =  𝐶  →  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 10 | 9 | breq2d | ⊢ ( 𝐵  =  𝐶  →  ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ↔  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ) | 
						
							| 11 | 10 | anbi2d | ⊢ ( 𝐵  =  𝐶  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) )  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 12 | 11 9 | ifbieq1d | ⊢ ( 𝐵  =  𝐶  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 13 | 8 12 | ja | ⊢ ( ( 𝑥  ∈  𝐴  →  𝐵  =  𝐶 )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 14 | 13 | a1d | ⊢ ( ( 𝑥  ∈  𝐴  →  𝐵  =  𝐶 )  →  ( 𝑥  ∈  ℝ  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 15 | 14 | ralimi2 | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 16 |  | mpteq12 | ⊢ ( ( ℝ  =  ℝ  ∧  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 17 | 1 15 16 | sylancr | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) ) | 
						
							| 20 | 19 | sumeq2sdv | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 22 | 21 | dfitg | ⊢ ∫ 𝐴 𝐵  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 24 | 23 | dfitg | ⊢ ∫ 𝐴 𝐶  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 25 | 20 22 24 | 3eqtr4g | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  ∫ 𝐴 𝐵  d 𝑥  =  ∫ 𝐴 𝐶  d 𝑥 ) |