Metamath Proof Explorer


Theorem itgeq2dv

Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Hypothesis itgeq2dv.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
Assertion itgeq2dv ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 )

Proof

Step Hyp Ref Expression
1 itgeq2dv.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
2 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵 = 𝐶 )
3 itgeq2 ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 )
4 2 3 syl ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 )