| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgge0.1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 2 |  | itgge0.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | itgge0.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 4 |  | itgz | ⊢ ∫ 𝐴 0  d 𝑥  =  0 | 
						
							| 5 |  | fconstmpt | ⊢ ( 𝐴  ×  { 0 } )  =  ( 𝑥  ∈  𝐴  ↦  0 ) | 
						
							| 6 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 8 | 7 2 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 9 |  | ibl0 | ⊢ ( 𝐴  ∈  dom  vol  →  ( 𝐴  ×  { 0 } )  ∈  𝐿1 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( 𝐴  ×  { 0 } )  ∈  𝐿1 ) | 
						
							| 11 | 5 10 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  0 )  ∈  𝐿1 ) | 
						
							| 12 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 13 | 11 1 12 2 3 | itgle | ⊢ ( 𝜑  →  ∫ 𝐴 0  d 𝑥  ≤  ∫ 𝐴 𝐵  d 𝑥 ) | 
						
							| 14 | 4 13 | eqbrtrrid | ⊢ ( 𝜑  →  0  ≤  ∫ 𝐴 𝐵  d 𝑥 ) |