Metamath Proof Explorer


Theorem itgiccshift

Description: The integral of a function, F stays the same if its closed interval domain is shifted by T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgiccshift.a ( 𝜑𝐴 ∈ ℝ )
itgiccshift.b ( 𝜑𝐵 ∈ ℝ )
itgiccshift.aleb ( 𝜑𝐴𝐵 )
itgiccshift.f ( 𝜑𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
itgiccshift.t ( 𝜑𝑇 ∈ ℝ+ )
itgiccshift.g 𝐺 = ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥𝑇 ) ) )
Assertion itgiccshift ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 itgiccshift.a ( 𝜑𝐴 ∈ ℝ )
2 itgiccshift.b ( 𝜑𝐵 ∈ ℝ )
3 itgiccshift.aleb ( 𝜑𝐴𝐵 )
4 itgiccshift.f ( 𝜑𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
5 itgiccshift.t ( 𝜑𝑇 ∈ ℝ+ )
6 itgiccshift.g 𝐺 = ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥𝑇 ) ) )
7 5 rpred ( 𝜑𝑇 ∈ ℝ )
8 1 2 7 3 leadd1dd ( 𝜑 → ( 𝐴 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) )
9 8 ditgpos ( 𝜑 → ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ( 𝐺𝑥 ) d 𝑥 )
10 1 7 readdcld ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ )
11 2 7 readdcld ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ )
12 cncff ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
13 4 12 syl ( 𝜑𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
14 13 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
15 1 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ∈ ℝ )
16 2 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐵 ∈ ℝ )
17 10 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ )
18 11 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ )
19 simpr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) )
20 eliccre ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ )
21 17 18 19 20 syl3anc ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ )
22 7 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℝ )
23 21 22 resubcld ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥𝑇 ) ∈ ℝ )
24 1 recnd ( 𝜑𝐴 ∈ ℂ )
25 7 recnd ( 𝜑𝑇 ∈ ℂ )
26 24 25 pncand ( 𝜑 → ( ( 𝐴 + 𝑇 ) − 𝑇 ) = 𝐴 )
27 26 eqcomd ( 𝜑𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) )
28 27 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) )
29 elicc2 ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) )
30 17 18 29 syl2anc ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) )
31 19 30 mpbid ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥𝑥 ≤ ( 𝐵 + 𝑇 ) ) )
32 31 simp2d ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 )
33 17 21 22 32 lesub1dd ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) − 𝑇 ) ≤ ( 𝑥𝑇 ) )
34 28 33 eqbrtrd ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥𝑇 ) )
35 31 simp3d ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) )
36 21 18 22 35 lesub1dd ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥𝑇 ) ≤ ( ( 𝐵 + 𝑇 ) − 𝑇 ) )
37 2 recnd ( 𝜑𝐵 ∈ ℂ )
38 37 25 pncand ( 𝜑 → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 )
39 38 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 )
40 36 39 breqtrd ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥𝑇 ) ≤ 𝐵 )
41 15 16 23 34 40 eliccd ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) )
42 14 41 ffvelrnd ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝑥𝑇 ) ) ∈ ℂ )
43 42 6 fmptd ( 𝜑𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ )
44 43 ffvelrnda ( ( 𝜑𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐺𝑥 ) ∈ ℂ )
45 10 11 44 itgioo ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺𝑥 ) d 𝑥 )
46 9 45 eqtr2d ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺𝑥 ) d 𝑥 = ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺𝑥 ) d 𝑥 )
47 eqid ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) )
48 47 addccncf ( 𝑇 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ℂ –cn→ ℂ ) )
49 25 48 syl ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ℂ –cn→ ℂ ) )
50 1 2 iccssred ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
51 ax-resscn ℝ ⊆ ℂ
52 50 51 sstrdi ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ )
53 10 11 iccssred ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⊆ ℝ )
54 53 51 sstrdi ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⊆ ℂ )
55 10 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ )
56 11 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ )
57 50 sselda ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ℝ )
58 7 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℝ )
59 57 58 readdcld ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ∈ ℝ )
60 1 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ )
61 simpr ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) )
62 2 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ )
63 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) ) )
64 60 62 63 syl2anc ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) ) )
65 61 64 mpbid ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) )
66 65 simp2d ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴𝑦 )
67 60 57 58 66 leadd1dd ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ≤ ( 𝑦 + 𝑇 ) )
68 65 simp3d ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦𝐵 )
69 57 62 58 68 leadd1dd ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) )
70 55 56 59 67 69 eliccd ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) )
71 47 49 52 54 70 cncfmptssg ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) )
72 fvoveq1 ( 𝑥 = 𝑤 → ( 𝐹 ‘ ( 𝑥𝑇 ) ) = ( 𝐹 ‘ ( 𝑤𝑇 ) ) )
73 72 cbvmptv ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥𝑇 ) ) ) = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) )
74 1 2 7 iccshift ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } )
75 74 mpteq1d ( 𝜑 → ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) ) )
76 73 75 syl5eq ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) ) )
77 6 76 syl5eq ( 𝜑𝐺 = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) ) )
78 eqeq1 ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) )
79 78 rexbidv ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) )
80 oveq1 ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) )
81 80 eqeq2d ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) )
82 81 cbvrexvw ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) )
83 79 82 bitrdi ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) )
84 83 cbvrabv { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) }
85 84 eqcomi { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) }
86 eqid ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) )
87 52 25 85 4 86 cncfshift ( 𝜑 → ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) ) ∈ ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) )
88 77 87 eqeltrd ( 𝜑𝐺 ∈ ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) )
89 43 feqmptd ( 𝜑𝐺 = ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐺𝑥 ) ) )
90 74 eqcomd ( 𝜑 → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } = ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) )
91 90 oveq1d ( 𝜑 → ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) = ( ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) –cn→ ℂ ) )
92 88 89 91 3eltr3d ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐺𝑥 ) ) ∈ ( ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) –cn→ ℂ ) )
93 ioosscn ( 𝐴 (,) 𝐵 ) ⊆ ℂ
94 93 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ )
95 1cnd ( 𝜑 → 1 ∈ ℂ )
96 ssid ℂ ⊆ ℂ
97 96 a1i ( 𝜑 → ℂ ⊆ ℂ )
98 94 95 97 constcncfg ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
99 fconstmpt ( ( 𝐴 (,) 𝐵 ) × { 1 } ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 )
100 ioombl ( 𝐴 (,) 𝐵 ) ∈ dom vol
101 100 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol )
102 ioovolcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ )
103 1 2 102 syl2anc ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ )
104 iblconst ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 )
105 101 103 95 104 syl3anc ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 )
106 99 105 eqeltrrid ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ 𝐿1 )
107 98 106 elind ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ∩ 𝐿1 ) )
108 50 resmptd ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) )
109 108 eqcomd ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) )
110 109 oveq2d ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) )
111 51 a1i ( 𝜑 → ℝ ⊆ ℂ )
112 111 sselda ( ( 𝜑𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ )
113 25 adantr ( ( 𝜑𝑦 ∈ ℝ ) → 𝑇 ∈ ℂ )
114 112 113 addcld ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝑦 + 𝑇 ) ∈ ℂ )
115 114 fmpttd ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) : ℝ ⟶ ℂ )
116 ssid ℝ ⊆ ℝ
117 116 a1i ( 𝜑 → ℝ ⊆ ℝ )
118 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
119 118 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
120 118 119 dvres ( ( ( ℝ ⊆ ℂ ∧ ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) )
121 111 115 117 50 120 syl22anc ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) )
122 110 121 eqtrd ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) )
123 iccntr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) )
124 1 2 123 syl2anc ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) )
125 124 reseq2d ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) )
126 reelprrecn ℝ ∈ { ℝ , ℂ }
127 126 a1i ( 𝜑 → ℝ ∈ { ℝ , ℂ } )
128 1cnd ( ( 𝜑𝑦 ∈ ℝ ) → 1 ∈ ℂ )
129 127 dvmptid ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) )
130 0cnd ( ( 𝜑𝑦 ∈ ℝ ) → 0 ∈ ℂ )
131 127 25 dvmptc ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑇 ) ) = ( 𝑦 ∈ ℝ ↦ 0 ) )
132 127 112 128 129 113 130 131 dvmptadd ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) )
133 132 reseq1d ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) )
134 ioossre ( 𝐴 (,) 𝐵 ) ⊆ ℝ
135 134 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ )
136 135 resmptd ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) )
137 1p0e1 ( 1 + 0 ) = 1
138 137 mpteq2i ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 )
139 138 a1i ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) )
140 133 136 139 3eqtrd ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) )
141 122 125 140 3eqtrd ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) )
142 fveq2 ( 𝑥 = ( 𝑦 + 𝑇 ) → ( 𝐺𝑥 ) = ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) )
143 oveq1 ( 𝑦 = 𝐴 → ( 𝑦 + 𝑇 ) = ( 𝐴 + 𝑇 ) )
144 oveq1 ( 𝑦 = 𝐵 → ( 𝑦 + 𝑇 ) = ( 𝐵 + 𝑇 ) )
145 1 2 3 71 92 107 141 142 143 144 10 11 itgsubsticc ( 𝜑 → ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺𝑥 ) d 𝑥 = ⨜ [ 𝐴𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 )
146 3 ditgpos ( 𝜑 → ⨜ [ 𝐴𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 )
147 43 adantr ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ )
148 147 70 ffvelrnd ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) ∈ ℂ )
149 1cnd ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℂ )
150 148 149 mulcld ( ( 𝜑𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) ∈ ℂ )
151 1 2 150 itgioo ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 )
152 fvoveq1 ( 𝑦 = 𝑥 → ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) )
153 152 oveq1d ( 𝑦 = 𝑥 → ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) = ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) )
154 153 cbvitgv ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) d 𝑥
155 43 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ )
156 10 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ )
157 11 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ )
158 50 sselda ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ )
159 7 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℝ )
160 158 159 readdcld ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ∈ ℝ )
161 1 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ )
162 1 rexrd ( 𝜑𝐴 ∈ ℝ* )
163 162 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* )
164 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
165 164 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* )
166 simpr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
167 iccgelb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴𝑥 )
168 163 165 166 167 syl3anc ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴𝑥 )
169 161 158 159 168 leadd1dd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ≤ ( 𝑥 + 𝑇 ) )
170 2 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ )
171 iccleub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥𝐵 )
172 163 165 166 171 syl3anc ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥𝐵 )
173 158 170 159 172 leadd1dd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) )
174 156 157 160 169 173 eliccd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) )
175 155 174 ffvelrnd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ∈ ℂ )
176 175 mulid1d ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) )
177 6 73 eqtri 𝐺 = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) )
178 177 a1i ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤𝑇 ) ) ) )
179 fvoveq1 ( 𝑤 = ( 𝑥 + 𝑇 ) → ( 𝐹 ‘ ( 𝑤𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) )
180 158 recnd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ )
181 25 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℂ )
182 180 181 pncand ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 + 𝑇 ) − 𝑇 ) = 𝑥 )
183 182 fveq2d ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) = ( 𝐹𝑥 ) )
184 179 183 sylan9eqr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 = ( 𝑥 + 𝑇 ) ) → ( 𝐹 ‘ ( 𝑤𝑇 ) ) = ( 𝐹𝑥 ) )
185 13 ffvelrnda ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℂ )
186 178 184 174 185 fvmptd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹𝑥 ) )
187 176 186 eqtrd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) = ( 𝐹𝑥 ) )
188 187 itgeq2dv ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )
189 154 188 syl5eq ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )
190 146 151 189 3eqtrd ( 𝜑 → ⨜ [ 𝐴𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )
191 46 145 190 3eqtrd ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )