Step |
Hyp |
Ref |
Expression |
1 |
|
itgiccshift.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
itgiccshift.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
itgiccshift.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
itgiccshift.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
5 |
|
itgiccshift.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
6 |
|
itgiccshift.g |
⊢ 𝐺 = ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
7 |
5
|
rpred |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
8 |
1 2 7 3
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) |
9 |
8
|
ditgpos |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
10 |
1 7
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
11 |
2 7
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
12 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ∈ ℝ ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐵 ∈ ℝ ) |
17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
18 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
20 |
|
eliccre |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
21 |
17 18 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
23 |
21 22
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
24 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
25 |
7
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
26 |
24 25
|
pncand |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) − 𝑇 ) = 𝐴 ) |
27 |
26
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
29 |
|
elicc2 |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) ) |
30 |
17 18 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) ) |
31 |
19 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝐴 + 𝑇 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 𝐵 + 𝑇 ) ) ) |
32 |
31
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 ) |
33 |
17 21 22 32
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) − 𝑇 ) ≤ ( 𝑥 − 𝑇 ) ) |
34 |
28 33
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥 − 𝑇 ) ) |
35 |
31
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) ) |
36 |
21 18 22 35
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
37 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
38 |
37 25
|
pncand |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
40 |
36 39
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ 𝐵 ) |
41 |
15 16 23 34 40
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
42 |
14 41
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ∈ ℂ ) |
43 |
42 6
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
45 |
10 11 44
|
itgioo |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
46 |
9 45
|
eqtr2d |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
47 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) |
48 |
47
|
addccncf |
⊢ ( 𝑇 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
49 |
25 48
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
50 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
51 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
52 |
50 51
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
53 |
10 11
|
iccssred |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⊆ ℝ ) |
54 |
53 51
|
sstrdi |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⊆ ℂ ) |
55 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
56 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
57 |
50
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ℝ ) |
58 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℝ ) |
59 |
57 58
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ∈ ℝ ) |
60 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
61 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
63 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
64 |
60 62 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
65 |
61 64
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
66 |
65
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑦 ) |
67 |
60 57 58 66
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ≤ ( 𝑦 + 𝑇 ) ) |
68 |
65
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ≤ 𝐵 ) |
69 |
57 62 58 68
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) |
70 |
55 56 59 67 69
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
71 |
47 49 52 54 70
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) ) |
72 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
73 |
72
|
cbvmptv |
⊢ ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
74 |
1 2 7
|
iccshift |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ) |
75 |
74
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
76 |
73 75
|
syl5eq |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
77 |
6 76
|
syl5eq |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
78 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
79 |
78
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
80 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
81 |
80
|
eqeq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
82 |
81
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) |
83 |
79 82
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
84 |
83
|
cbvrabv |
⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } |
85 |
84
|
eqcomi |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } |
86 |
|
eqid |
⊢ ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
87 |
52 25 85 4 86
|
cncfshift |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ∈ ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) ) |
88 |
77 87
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) ) |
89 |
43
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
90 |
74
|
eqcomd |
⊢ ( 𝜑 → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } = ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
91 |
90
|
oveq1d |
⊢ ( 𝜑 → ( { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } –cn→ ℂ ) = ( ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) –cn→ ℂ ) ) |
92 |
88 89 91
|
3eltr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) –cn→ ℂ ) ) |
93 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
94 |
93
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
95 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
96 |
|
ssid |
⊢ ℂ ⊆ ℂ |
97 |
96
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
98 |
94 95 97
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
99 |
|
fconstmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) × { 1 } ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) |
100 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
101 |
100
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
102 |
|
ioovolcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
103 |
1 2 102
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
104 |
|
iblconst |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 ) |
105 |
101 103 95 104
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 ) |
106 |
99 105
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ 𝐿1 ) |
107 |
98 106
|
elind |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
108 |
50
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) |
109 |
108
|
eqcomd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) |
110 |
109
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) ) |
111 |
51
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
112 |
111
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
113 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
114 |
112 113
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + 𝑇 ) ∈ ℂ ) |
115 |
114
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) : ℝ ⟶ ℂ ) |
116 |
|
ssid |
⊢ ℝ ⊆ ℝ |
117 |
116
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
118 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
119 |
118
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
120 |
118 119
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
121 |
111 115 117 50 120
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
122 |
110 121
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
123 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
124 |
1 2 123
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
125 |
124
|
reseq2d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
126 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
127 |
126
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
128 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
129 |
127
|
dvmptid |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
130 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 0 ∈ ℂ ) |
131 |
127 25
|
dvmptc |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑇 ) ) = ( 𝑦 ∈ ℝ ↦ 0 ) ) |
132 |
127 112 128 129 113 130 131
|
dvmptadd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ) |
133 |
132
|
reseq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
134 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
135 |
134
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
136 |
135
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 1 + 0 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) ) |
137 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
138 |
137
|
mpteq2i |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) |
139 |
138
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 + 0 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
140 |
133 136 139
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( 𝑦 + 𝑇 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
141 |
122 125 140
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 + 𝑇 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
142 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑇 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) ) |
143 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 + 𝑇 ) = ( 𝐴 + 𝑇 ) ) |
144 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 + 𝑇 ) = ( 𝐵 + 𝑇 ) ) |
145 |
1 2 3 71 92 107 141 142 143 144 10 11
|
itgsubsticc |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 + 𝑇 ) → ( 𝐵 + 𝑇 ) ] ( 𝐺 ‘ 𝑥 ) d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 ) |
146 |
3
|
ditgpos |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 ) |
147 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ ) |
148 |
147 70
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) ∈ ℂ ) |
149 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℂ ) |
150 |
148 149
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) ∈ ℂ ) |
151 |
1 2 150
|
itgioo |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 ) |
152 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
153 |
152
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) = ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) ) |
154 |
153
|
cbvitgv |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) d 𝑥 |
155 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 : ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ⟶ ℂ ) |
156 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
157 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
158 |
50
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
159 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℝ ) |
160 |
158 159
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
161 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
162 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
163 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
164 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
166 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
167 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
168 |
163 165 166 167
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
169 |
161 158 159 168
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 + 𝑇 ) ≤ ( 𝑥 + 𝑇 ) ) |
170 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
171 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
172 |
163 165 166 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
173 |
158 170 159 172
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ≤ ( 𝐵 + 𝑇 ) ) |
174 |
156 157 160 169 173
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 + 𝑇 ) ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
175 |
155 174
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ∈ ℂ ) |
176 |
175
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) = ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) ) |
177 |
6 73
|
eqtri |
⊢ 𝐺 = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) |
178 |
177
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 = ( 𝑤 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ↦ ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) ) ) |
179 |
|
fvoveq1 |
⊢ ( 𝑤 = ( 𝑥 + 𝑇 ) → ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) ) |
180 |
158
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
181 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑇 ∈ ℂ ) |
182 |
180 181
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 + 𝑇 ) − 𝑇 ) = 𝑥 ) |
183 |
182
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑇 ) − 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
184 |
179 183
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 = ( 𝑥 + 𝑇 ) ) → ( 𝐹 ‘ ( 𝑤 − 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
185 |
13
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
186 |
178 184 174 185
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
187 |
176 186
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) = ( 𝐹 ‘ 𝑥 ) ) |
188 |
187
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑥 + 𝑇 ) ) · 1 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
189 |
154 188
|
syl5eq |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
190 |
146 151 189
|
3eqtrd |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐺 ‘ ( 𝑦 + 𝑇 ) ) · 1 ) d 𝑦 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
191 |
46 145 190
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |