| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgcnval.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | itgcnval.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 | 1 2 | itgcnval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝜑  →  ( ℑ ‘ ∫ 𝐴 𝐵  d 𝑥 )  =  ( ℑ ‘ ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) ) ) | 
						
							| 5 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 | 7 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 9 | 7 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) ) | 
						
							| 10 | 2 9 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 12 | 8 11 | itgrecl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  ∈  ℝ ) | 
						
							| 13 | 7 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 14 | 10 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 15 | 13 14 | itgrecl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  ∈  ℝ ) | 
						
							| 16 | 12 15 | crimd | ⊢ ( 𝜑  →  ( ℑ ‘ ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) )  =  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) | 
						
							| 17 | 4 16 | eqtrd | ⊢ ( 𝜑  →  ( ℑ ‘ ∫ 𝐴 𝐵  d 𝑥 )  =  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) |