| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgioo.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | itgioo.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | itgioo.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 6 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 8 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 9 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 10 |  | icc0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) ) | 
						
							| 12 | 11 | biimpar | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝐴 [,] 𝐵 )  =  ∅ ) | 
						
							| 13 | 12 | difeq1d | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) )  =  ( ∅  ∖  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 14 |  | 0dif | ⊢ ( ∅  ∖  ( 𝐴 (,) 𝐵 ) )  =  ∅ | 
						
							| 15 |  | 0ss | ⊢ ∅  ⊆  { 𝐴 ,  𝐵 } | 
						
							| 16 | 14 15 | eqsstri | ⊢ ( ∅  ∖  ( 𝐴 (,) 𝐵 ) )  ⊆  { 𝐴 ,  𝐵 } | 
						
							| 17 | 13 16 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) )  ⊆  { 𝐴 ,  𝐵 } ) | 
						
							| 18 |  | uncom | ⊢ ( { 𝐴 ,  𝐵 }  ∪  ( 𝐴 (,) 𝐵 ) )  =  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 ,  𝐵 } ) | 
						
							| 19 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 20 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 22 |  | prunioo | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 ,  𝐵 } )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐴 ,  𝐵 } )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 24 | 18 23 | eqtr2id | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴 [,] 𝐵 )  =  ( { 𝐴 ,  𝐵 }  ∪  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 25 | 24 | difeq1d | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) )  =  ( ( { 𝐴 ,  𝐵 }  ∪  ( 𝐴 (,) 𝐵 ) )  ∖  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 26 |  | difun2 | ⊢ ( ( { 𝐴 ,  𝐵 }  ∪  ( 𝐴 (,) 𝐵 ) )  ∖  ( 𝐴 (,) 𝐵 ) )  =  ( { 𝐴 ,  𝐵 }  ∖  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 27 | 25 26 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) )  =  ( { 𝐴 ,  𝐵 }  ∖  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 28 |  | difss | ⊢ ( { 𝐴 ,  𝐵 }  ∖  ( 𝐴 (,) 𝐵 ) )  ⊆  { 𝐴 ,  𝐵 } | 
						
							| 29 | 27 28 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) )  ⊆  { 𝐴 ,  𝐵 } ) | 
						
							| 30 | 17 29 2 1 | ltlecasei | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) )  ⊆  { 𝐴 ,  𝐵 } ) | 
						
							| 31 | 1 2 | prssd | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ⊆  ℝ ) | 
						
							| 32 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 33 |  | ovolfi | ⊢ ( ( { 𝐴 ,  𝐵 }  ∈  Fin  ∧  { 𝐴 ,  𝐵 }  ⊆  ℝ )  →  ( vol* ‘ { 𝐴 ,  𝐵 } )  =  0 ) | 
						
							| 34 | 32 31 33 | sylancr | ⊢ ( 𝜑  →  ( vol* ‘ { 𝐴 ,  𝐵 } )  =  0 ) | 
						
							| 35 |  | ovolssnul | ⊢ ( ( ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) )  ⊆  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝐵 }  ⊆  ℝ  ∧  ( vol* ‘ { 𝐴 ,  𝐵 } )  =  0 )  →  ( vol* ‘ ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) ) )  =  0 ) | 
						
							| 36 | 30 31 34 35 | syl3anc | ⊢ ( 𝜑  →  ( vol* ‘ ( ( 𝐴 [,] 𝐵 )  ∖  ( 𝐴 (,) 𝐵 ) ) )  =  0 ) | 
						
							| 37 | 5 7 36 3 | itgss3 | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝐶 )  ∈  𝐿1  ↔  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  𝐶 )  ∈  𝐿1 )  ∧  ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) 𝐶  d 𝑥 ) ) | 
						
							| 38 | 37 | simprd | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) 𝐶  d 𝑥 ) |