Metamath Proof Explorer


Theorem itgioocnicc

Description: The integral of a piecewise continuous function F on an open interval is equal to the integral of the continuous function G , in the corresponding closed interval. G is equal to F on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgioocnicc.a ( 𝜑𝐴 ∈ ℝ )
itgioocnicc.b ( 𝜑𝐵 ∈ ℝ )
itgioocnicc.f ( 𝜑𝐹 : dom 𝐹 ⟶ ℂ )
itgioocnicc.fcn ( 𝜑 → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
itgioocnicc.fdom ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 )
itgioocnicc.r ( 𝜑𝑅 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐴 ) )
itgioocnicc.l ( 𝜑𝐿 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐵 ) )
itgioocnicc.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
Assertion itgioocnicc ( 𝜑 → ( 𝐺 ∈ 𝐿1 ∧ ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 ) )

Proof

Step Hyp Ref Expression
1 itgioocnicc.a ( 𝜑𝐴 ∈ ℝ )
2 itgioocnicc.b ( 𝜑𝐵 ∈ ℝ )
3 itgioocnicc.f ( 𝜑𝐹 : dom 𝐹 ⟶ ℂ )
4 itgioocnicc.fcn ( 𝜑 → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
5 itgioocnicc.fdom ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 )
6 itgioocnicc.r ( 𝜑𝑅 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐴 ) )
7 itgioocnicc.l ( 𝜑𝐿 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐵 ) )
8 itgioocnicc.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
9 iftrue ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = 𝑅 )
10 iftrue ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = 𝑅 )
11 9 10 eqtr4d ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
12 11 adantl ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
13 iftrue ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = 𝐿 )
14 iftrue ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = 𝐿 )
15 13 14 eqtr4d ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) )
16 15 adantl ( ( ¬ 𝑥 = 𝐴𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) )
17 16 ifeq2d ( ( ¬ 𝑥 = 𝐴𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
18 17 adantll ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
19 iffalse ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) )
20 19 ad2antlr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) )
21 iffalse ( ¬ 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) )
22 21 adantl ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) )
23 iffalse ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) )
24 23 ad2antlr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) )
25 iffalse ( ¬ 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) )
26 25 adantl ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) )
27 1 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ )
28 27 rexrd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* )
29 28 ad2antrr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* )
30 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
31 30 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* )
32 2 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ )
33 simpr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
34 eliccre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ )
35 27 32 33 34 syl3anc ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ )
36 35 ad2antrr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ )
37 1 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 ∈ ℝ )
38 35 adantr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ∈ ℝ )
39 30 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* )
40 iccgelb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴𝑥 )
41 28 39 33 40 syl3anc ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴𝑥 )
42 41 adantr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴𝑥 )
43 neqne ( ¬ 𝑥 = 𝐴𝑥𝐴 )
44 43 adantl ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥𝐴 )
45 37 38 42 44 leneltd ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 < 𝑥 )
46 45 adantr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 < 𝑥 )
47 35 adantr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ )
48 2 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ )
49 iccleub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥𝐵 )
50 28 39 33 49 syl3anc ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥𝐵 )
51 50 adantr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥𝐵 )
52 eqcom ( 𝑥 = 𝐵𝐵 = 𝑥 )
53 52 notbii ( ¬ 𝑥 = 𝐵 ↔ ¬ 𝐵 = 𝑥 )
54 53 biimpi ( ¬ 𝑥 = 𝐵 → ¬ 𝐵 = 𝑥 )
55 54 neqned ( ¬ 𝑥 = 𝐵𝐵𝑥 )
56 55 adantl ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵𝑥 )
57 47 48 51 56 leneltd ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐵 )
58 57 adantlr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐵 )
59 29 31 36 46 58 eliood ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) )
60 fvres ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
61 59 60 syl ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
62 24 26 61 3eqtrrd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
63 20 22 62 3eqtrd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
64 18 63 pm2.61dan ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
65 12 64 pm2.61dan ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
66 65 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) )
67 8 66 eqtrid ( 𝜑𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) )
68 nfv 𝑥 𝜑
69 eqid ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) )
70 68 69 1 2 4 7 6 cncfiooicc ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
71 67 70 eqeltrd ( 𝜑𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
72 cniccibl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐺 ∈ 𝐿1 )
73 1 2 71 72 syl3anc ( 𝜑𝐺 ∈ 𝐿1 )
74 9 adantl ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = 𝑅 )
75 limccl ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐴 ) ⊆ ℂ
76 75 6 sselid ( 𝜑𝑅 ∈ ℂ )
77 76 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → 𝑅 ∈ ℂ )
78 74 77 eqeltrd ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ )
79 19 13 sylan9eq ( ( ¬ 𝑥 = 𝐴𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = 𝐿 )
80 79 adantll ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = 𝐿 )
81 limccl ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) lim 𝐵 ) ⊆ ℂ
82 81 7 sselid ( 𝜑𝐿 ∈ ℂ )
83 82 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ )
84 80 83 eqeltrd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ )
85 19 21 sylan9eq ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = ( 𝐹𝑥 ) )
86 85 adantll ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = ( 𝐹𝑥 ) )
87 61 eqcomd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹𝑥 ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) )
88 cncff ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
89 4 88 syl ( 𝜑 → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
90 89 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
91 90 59 ffvelrnd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ∈ ℂ )
92 87 91 eqeltrd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹𝑥 ) ∈ ℂ )
93 86 92 eqeltrd ( ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ )
94 84 93 pm2.61dan ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ )
95 78 94 pm2.61dan ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ )
96 8 fvmpt2 ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) ∈ ℂ ) → ( 𝐺𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
97 33 95 96 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
98 97 95 eqeltrd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺𝑥 ) ∈ ℂ )
99 1 2 98 itgioo ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺𝑥 ) d 𝑥 )
100 99 eqcomd ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺𝑥 ) d 𝑥 )
101 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
102 101 sseli ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
103 102 97 sylan2 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) )
104 1 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ )
105 eliooord ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑥𝑥 < 𝐵 ) )
106 105 simpld ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝑥 )
107 106 adantl ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑥 )
108 104 107 gtned ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥𝐴 )
109 108 neneqd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 )
110 109 19 syl ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) )
111 102 35 sylan2 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ )
112 105 simprd ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 < 𝐵 )
113 112 adantl ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 < 𝐵 )
114 111 113 ltned ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥𝐵 )
115 114 neneqd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐵 )
116 115 21 syl ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹𝑥 ) ) = ( 𝐹𝑥 ) )
117 103 110 116 3eqtrd ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺𝑥 ) = ( 𝐹𝑥 ) )
118 117 itgeq2dv ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )
119 3 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ )
120 5 sselda ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ dom 𝐹 )
121 119 120 ffvelrnd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℂ )
122 1 2 121 itgioo ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )
123 100 118 122 3eqtrd ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 )
124 73 123 jca ( 𝜑 → ( 𝐺 ∈ 𝐿1 ∧ ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) d 𝑥 ) )