Description: Transfer an integral using S.2 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgitg2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
itgitg2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝐴 ) | ||
itgitg2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ 𝐿1 ) | ||
Assertion | itgitg2 | ⊢ ( 𝜑 → ∫ ℝ 𝐴 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgitg2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
2 | itgitg2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝐴 ) | |
3 | itgitg2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ 𝐿1 ) | |
4 | 1 3 2 | itgposval | ⊢ ( 𝜑 → ∫ ℝ 𝐴 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) ) ) ) |
5 | iftrue | ⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) = 𝐴 ) | |
6 | 5 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 𝐴 ) |
7 | 6 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 𝐴 ) ) |
8 | 4 7 | eqtrdi | ⊢ ( 𝜑 → ∫ ℝ 𝐴 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 𝐴 ) ) ) |