Step |
Hyp |
Ref |
Expression |
1 |
|
itgle.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
2 |
|
itgle.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
3 |
|
itgle.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
itgle.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
5 |
|
itgle.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
6 |
3
|
iblrelem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
7 |
1 6
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
8 |
7
|
simp2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ) |
9 |
4
|
iblrelem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) ) ) |
10 |
2 9
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) ) |
11 |
10
|
simp3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) |
12 |
10
|
simp2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ) |
13 |
7
|
simp3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) |
14 |
3
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
15 |
14
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ 𝐵 ) |
17 |
|
elxrge0 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
18 |
15 16 17
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
19 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
20 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
21 |
18 20
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ( 0 [,] +∞ ) ) |
22 |
21
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
23 |
4
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
24 |
23
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
25 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 0 ≤ 𝐶 ) |
26 |
|
elxrge0 |
⊢ ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) |
27 |
24 25 26
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
28 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
29 |
27 28
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
30 |
29
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
31 |
|
0re |
⊢ 0 ∈ ℝ |
32 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
33 |
31 4 32
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
34 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
35 |
4 31 34
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
36 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
37 |
31 4 36
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
38 |
3 4 35 5 37
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
39 |
|
maxle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∧ 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
40 |
31 3 35 39
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∧ 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
41 |
33 38 40
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
42 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
44 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
46 |
41 43 45
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
47 |
46
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) ) |
48 |
|
0le0 |
⊢ 0 ≤ 0 |
49 |
48
|
a1i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
50 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = 0 ) |
51 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = 0 ) |
52 |
49 50 51
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
53 |
47 52
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
54 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) |
55 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) |
56 |
53 54 55
|
3brtr4g |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
57 |
56
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
58 |
|
reex |
⊢ ℝ ∈ V |
59 |
58
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
60 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) |
61 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
62 |
59 21 29 60 61
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
63 |
57 62
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
64 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) |
65 |
22 30 63 64
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) |
66 |
4
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℝ ) |
67 |
66
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ℝ ) |
68 |
67
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ℝ* ) |
69 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → 0 ≤ - 𝐶 ) |
70 |
|
elxrge0 |
⊢ ( - 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( - 𝐶 ∈ ℝ* ∧ 0 ≤ - 𝐶 ) ) |
71 |
68 69 70
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ( 0 [,] +∞ ) ) |
72 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
73 |
71 72
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
74 |
73
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
75 |
3
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
76 |
75
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ ) |
77 |
76
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ* ) |
78 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ - 𝐵 ) |
79 |
|
elxrge0 |
⊢ ( - 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( - 𝐵 ∈ ℝ* ∧ 0 ≤ - 𝐵 ) ) |
80 |
77 78 79
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ( 0 [,] +∞ ) ) |
81 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
82 |
80 81
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ∈ ( 0 [,] +∞ ) ) |
83 |
82
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
84 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
85 |
31 75 84
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
86 |
|
ifcl |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
87 |
75 31 86
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
88 |
3 4
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐵 ) ) |
89 |
5 88
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ≤ - 𝐵 ) |
90 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → - 𝐵 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
91 |
31 75 90
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
92 |
66 75 87 89 91
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
93 |
|
maxle |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐶 ∈ ℝ ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∧ - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
94 |
31 66 87 93
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∧ - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
95 |
85 92 94
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
96 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
98 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
100 |
95 97 99
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
101 |
100
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) ) |
102 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = 0 ) |
103 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = 0 ) |
104 |
49 102 103
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
105 |
101 104
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
106 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) |
107 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) |
108 |
105 106 107
|
3brtr4g |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) |
109 |
108
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) |
110 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) |
111 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
112 |
59 73 82 110 111
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
113 |
109 112
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
114 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) |
115 |
74 83 113 114
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) |
116 |
8 11 12 13 65 115
|
le2subd |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) ≤ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ) ) |
117 |
3 1
|
itgrevallem1 |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) ) |
118 |
4 2
|
itgrevallem1 |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ) ) |
119 |
116 117 118
|
3brtr4d |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ≤ ∫ 𝐴 𝐶 d 𝑥 ) |