| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgle.1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 2 |  | itgle.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 3 |  | itgle.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | itgle.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 5 |  | itgle.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ≤  𝐶 ) | 
						
							| 6 | 3 | iblrelem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 7 | 1 6 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 8 | 7 | simp2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 9 | 4 | iblrelem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 10 | 2 9 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 11 | 10 | simp3d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 12 | 10 | simp2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 13 | 7 | simp3d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 14 | 3 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 15 | 14 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 16 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) )  →  0  ≤  𝐵 ) | 
						
							| 17 |  | elxrge0 | ⊢ ( 𝐵  ∈  ( 0 [,] +∞ )  ↔  ( 𝐵  ∈  ℝ*  ∧  0  ≤  𝐵 ) ) | 
						
							| 18 | 15 16 17 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 19 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 20 | 19 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 21 | 18 20 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 22 | 21 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 23 | 4 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 24 | 23 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) )  →  0  ≤  𝐶 ) | 
						
							| 26 |  | elxrge0 | ⊢ ( 𝐶  ∈  ( 0 [,] +∞ )  ↔  ( 𝐶  ∈  ℝ*  ∧  0  ≤  𝐶 ) ) | 
						
							| 27 | 24 25 26 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) )  →  𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 | 19 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 29 | 27 28 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 30 | 29 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 31 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 32 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 33 | 31 4 32 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 34 |  | ifcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 35 | 4 31 34 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 36 |  | max2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐶  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 37 | 31 4 36 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 38 | 3 4 35 5 37 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 39 |  | maxle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ )  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ↔  ( 0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∧  𝐵  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 40 | 31 3 35 39 | mp3an2i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ↔  ( 0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∧  𝐵  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 41 | 33 38 40 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 42 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  =  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  =  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 44 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 )  =  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 )  =  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 46 | 41 43 45 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 ) ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 ) ) ) | 
						
							| 48 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 49 | 48 | a1i | ⊢ ( ¬  𝑥  ∈  𝐴  →  0  ≤  0 ) | 
						
							| 50 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  =  0 ) | 
						
							| 51 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 )  =  0 ) | 
						
							| 52 | 49 50 51 | 3brtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 ) ) | 
						
							| 53 | 47 52 | pm2.61d1 | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 ) ) | 
						
							| 54 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) | 
						
							| 55 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 ) | 
						
							| 56 | 53 54 55 | 3brtr4g | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ≤  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) | 
						
							| 57 | 56 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ≤  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) | 
						
							| 58 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 59 | 58 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 60 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) ) | 
						
							| 61 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) | 
						
							| 62 | 59 21 29 60 61 | ofrfval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  ↔  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ≤  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) | 
						
							| 63 | 57 62 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) | 
						
							| 64 |  | itg2le | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) ) | 
						
							| 65 | 22 30 63 64 | syl3anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) ) | 
						
							| 66 | 4 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐶  ∈  ℝ ) | 
						
							| 67 | 66 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) )  →  - 𝐶  ∈  ℝ ) | 
						
							| 68 | 67 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) )  →  - 𝐶  ∈  ℝ* ) | 
						
							| 69 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) )  →  0  ≤  - 𝐶 ) | 
						
							| 70 |  | elxrge0 | ⊢ ( - 𝐶  ∈  ( 0 [,] +∞ )  ↔  ( - 𝐶  ∈  ℝ*  ∧  0  ≤  - 𝐶 ) ) | 
						
							| 71 | 68 69 70 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) )  →  - 𝐶  ∈  ( 0 [,] +∞ ) ) | 
						
							| 72 | 19 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 73 | 71 72 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 74 | 73 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 75 | 3 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 76 | 75 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  - 𝐵  ∈  ℝ ) | 
						
							| 77 | 76 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  - 𝐵  ∈  ℝ* ) | 
						
							| 78 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  0  ≤  - 𝐵 ) | 
						
							| 79 |  | elxrge0 | ⊢ ( - 𝐵  ∈  ( 0 [,] +∞ )  ↔  ( - 𝐵  ∈  ℝ*  ∧  0  ≤  - 𝐵 ) ) | 
						
							| 80 | 77 78 79 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  - 𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 81 | 19 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 82 | 80 81 | ifclda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 83 | 82 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 84 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐵  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 85 | 31 75 84 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 86 |  | ifcl | ⊢ ( ( - 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 87 | 75 31 86 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 88 | 3 4 | lenegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  ≤  𝐶  ↔  - 𝐶  ≤  - 𝐵 ) ) | 
						
							| 89 | 5 88 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐶  ≤  - 𝐵 ) | 
						
							| 90 |  | max2 | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐵  ∈  ℝ )  →  - 𝐵  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 91 | 31 75 90 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 92 | 66 75 87 89 91 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐶  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 93 |  | maxle | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐶  ∈  ℝ  ∧  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℝ )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ↔  ( 0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∧  - 𝐶  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 94 | 31 66 87 93 | mp3an2i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ↔  ( 0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∧  - 𝐶  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 95 | 85 92 94 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 96 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 )  =  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 )  =  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ) | 
						
							| 98 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 )  =  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 )  =  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 100 | 95 97 99 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) | 
						
							| 101 | 100 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) ) | 
						
							| 102 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 )  =  0 ) | 
						
							| 103 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 )  =  0 ) | 
						
							| 104 | 49 102 103 | 3brtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) | 
						
							| 105 | 101 104 | pm2.61d1 | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) | 
						
							| 106 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ,  0 ) | 
						
							| 107 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) | 
						
							| 108 | 105 106 107 | 3brtr4g | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 )  ≤  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) | 
						
							| 109 | 108 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 )  ≤  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) | 
						
							| 110 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) ) | 
						
							| 111 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) | 
						
							| 112 | 59 73 82 110 111 | ofrfval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) )  ↔  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 )  ≤  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) | 
						
							| 113 | 109 112 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) | 
						
							| 114 |  | itg2le | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 115 | 74 83 113 114 | syl3anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 116 | 8 11 12 13 65 115 | le2subd | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) )  ≤  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) ) ) ) | 
						
							| 117 | 3 1 | itgrevallem1 | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 118 | 4 2 | itgrevallem1 | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐶 ) ,  - 𝐶 ,  0 ) ) ) ) ) | 
						
							| 119 | 116 117 118 | 3brtr4d | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  ≤  ∫ 𝐴 𝐶  d 𝑥 ) |