| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgless.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | itgless.2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 3 |  | itgless.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | itgless.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  0  ≤  𝐶 ) | 
						
							| 5 |  | itgless.5 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 6 |  | itgss2 | ⊢ ( 𝐴  ⊆  𝐵  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  d 𝑥 ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  d 𝑥 ) | 
						
							| 8 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 9 | 5 8 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 10 | 9 3 | mbfdm2 | ⊢ ( 𝜑  →  𝐵  ∈  dom  vol ) | 
						
							| 11 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 12 | 11 3 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 13 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 14 |  | ifcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 16 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 18 | 17 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  0 ) | 
						
							| 19 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 20 | 19 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 21 | 1 2 3 5 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 22 | 20 21 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 23 | 1 10 15 18 22 | iblss2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 24 | 3 13 14 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 25 | 3 | leidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ≤  𝐶 ) | 
						
							| 26 |  | breq1 | ⊢ ( 𝐶  =  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  →  ( 𝐶  ≤  𝐶  ↔  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ≤  𝐶 ) ) | 
						
							| 27 |  | breq1 | ⊢ ( 0  =  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  →  ( 0  ≤  𝐶  ↔  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ≤  𝐶 ) ) | 
						
							| 28 | 26 27 | ifboth | ⊢ ( ( 𝐶  ≤  𝐶  ∧  0  ≤  𝐶 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ≤  𝐶 ) | 
						
							| 29 | 25 4 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ≤  𝐶 ) | 
						
							| 30 | 23 5 24 3 29 | itgle | ⊢ ( 𝜑  →  ∫ 𝐵 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  d 𝑥  ≤  ∫ 𝐵 𝐶  d 𝑥 ) | 
						
							| 31 | 7 30 | eqbrtrd | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  ≤  ∫ 𝐵 𝐶  d 𝑥 ) |