Step |
Hyp |
Ref |
Expression |
1 |
|
itgless.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
itgless.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
3 |
|
itgless.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) |
4 |
|
itgless.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 0 ≤ 𝐶 ) |
5 |
|
itgless.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) |
6 |
|
itgss2 |
⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
8 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
10 |
9 3
|
mbfdm2 |
⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
11 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
12 |
11 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℝ ) |
15 |
12 13 14
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℝ ) |
16 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
18 |
17
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
19 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
20 |
19
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
21 |
1 2 3 5
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
22 |
20 21
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
23 |
1 10 15 18 22
|
iblss2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
24 |
3 13 14
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℝ ) |
25 |
3
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ≤ 𝐶 ) |
26 |
|
breq1 |
⊢ ( 𝐶 = if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) → ( 𝐶 ≤ 𝐶 ↔ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) ) |
27 |
|
breq1 |
⊢ ( 0 = if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) → ( 0 ≤ 𝐶 ↔ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) ) |
28 |
26 27
|
ifboth |
⊢ ( ( 𝐶 ≤ 𝐶 ∧ 0 ≤ 𝐶 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) |
29 |
25 4 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) |
30 |
23 5 24 3 29
|
itgle |
⊢ ( 𝜑 → ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ≤ ∫ 𝐵 𝐶 d 𝑥 ) |
31 |
7 30
|
eqbrtrd |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 ≤ ∫ 𝐵 𝐶 d 𝑥 ) |