| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgmpt.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 3 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) | 
						
							| 5 | 2 3 4 | cbvitg | ⊢ ∫ 𝐴 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  d 𝑦  =  ∫ 𝐴 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  d 𝑥 | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 8 | 7 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 9 | 6 1 8 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 10 | 9 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  d 𝑥  =  ∫ 𝐴 𝐵  d 𝑥 ) | 
						
							| 11 | 5 10 | eqtr2id | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ∫ 𝐴 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  d 𝑦 ) |