| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgcnval.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | itgcnval.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 5 | 4 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 6 | 5 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 7 | 5 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) ) | 
						
							| 8 | 2 7 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 10 | 6 9 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  ∈  ℂ ) | 
						
							| 11 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 12 | 5 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 13 | 8 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 14 | 12 13 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  ∈  ℂ ) | 
						
							| 15 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  ∈  ℂ )  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 16 | 11 14 15 | sylancr | ⊢ ( 𝜑  →  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 17 | 10 16 | negdid | ⊢ ( 𝜑  →  - ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  =  ( - ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  - ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) ) | 
						
							| 18 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 19 |  | ifcl | ⊢ ( ( ( ℜ ‘ 𝐵 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 20 | 6 18 19 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 21 | 6 | iblre | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) ) | 
						
							| 22 | 9 21 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 24 | 20 23 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  ∈  ℂ ) | 
						
							| 25 | 6 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 26 |  | ifcl | ⊢ ( ( - ( ℜ ‘ 𝐵 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 27 | 25 18 26 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 28 | 22 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 29 | 27 28 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  ∈  ℂ ) | 
						
							| 30 | 24 29 | negsubdi2d | ⊢ ( 𝜑  →  - ( ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 )  =  ( ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 31 | 6 9 | itgreval | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  =  ( ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 32 | 31 | negeqd | ⊢ ( 𝜑  →  - ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  =  - ( ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 33 | 5 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℂ ) | 
						
							| 34 | 33 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ - 𝐵 )  ∈  ℝ ) | 
						
							| 35 | 1 2 | iblneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  𝐿1 ) | 
						
							| 36 | 33 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ - 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ - 𝐵 ) )  ∈  𝐿1 ) ) ) | 
						
							| 37 | 35 36 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ - 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ - 𝐵 ) )  ∈  𝐿1 ) ) | 
						
							| 38 | 37 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ - 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 39 | 34 38 | itgreval | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ - 𝐵 )  d 𝑥  =  ( ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 40 | 5 | renegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ - 𝐵 )  =  - ( ℜ ‘ 𝐵 ) ) | 
						
							| 41 | 40 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  ( ℜ ‘ - 𝐵 )  ↔  0  ≤  - ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 42 | 41 40 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 43 | 42 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 )  d 𝑥  =  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 ) | 
						
							| 44 | 40 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ - 𝐵 )  =  - - ( ℜ ‘ 𝐵 ) ) | 
						
							| 45 | 6 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 46 | 45 | negnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - - ( ℜ ‘ 𝐵 )  =  ( ℜ ‘ 𝐵 ) ) | 
						
							| 47 | 44 46 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ - 𝐵 )  =  ( ℜ ‘ 𝐵 ) ) | 
						
							| 48 | 47 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  - ( ℜ ‘ - 𝐵 )  ↔  0  ≤  ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 49 | 48 47 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 50 | 49 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 )  d 𝑥  =  ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 ) | 
						
							| 51 | 43 50 | oveq12d | ⊢ ( 𝜑  →  ( ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 )  d 𝑥 )  =  ( ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 52 | 39 51 | eqtrd | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℜ ‘ - 𝐵 )  d 𝑥  =  ( ∫ 𝐴 if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 53 | 30 32 52 | 3eqtr4d | ⊢ ( 𝜑  →  - ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  =  ∫ 𝐴 ( ℜ ‘ - 𝐵 )  d 𝑥 ) | 
						
							| 54 |  | mulneg2 | ⊢ ( ( i  ∈  ℂ  ∧  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  ∈  ℂ )  →  ( i  ·  - ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  =  - ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) | 
						
							| 55 | 11 14 54 | sylancr | ⊢ ( 𝜑  →  ( i  ·  - ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  =  - ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) | 
						
							| 56 |  | ifcl | ⊢ ( ( ( ℑ ‘ 𝐵 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 57 | 12 18 56 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 58 | 12 | iblre | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) ) | 
						
							| 59 | 13 58 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) | 
						
							| 60 | 59 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 61 | 57 60 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  ∈  ℂ ) | 
						
							| 62 | 12 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 63 |  | ifcl | ⊢ ( ( - ( ℑ ‘ 𝐵 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 64 | 62 18 63 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 65 | 59 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 66 | 64 65 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  ∈  ℂ ) | 
						
							| 67 | 61 66 | negsubdi2d | ⊢ ( 𝜑  →  - ( ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 )  =  ( ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 68 | 5 | imnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ - 𝐵 )  =  - ( ℑ ‘ 𝐵 ) ) | 
						
							| 69 | 68 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  ( ℑ ‘ - 𝐵 )  ↔  0  ≤  - ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 70 | 69 68 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 71 | 70 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥  =  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 ) | 
						
							| 72 | 68 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ - 𝐵 )  =  - - ( ℑ ‘ 𝐵 ) ) | 
						
							| 73 | 12 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 74 | 73 | negnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - - ( ℑ ‘ 𝐵 )  =  ( ℑ ‘ 𝐵 ) ) | 
						
							| 75 | 72 74 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ - 𝐵 )  =  ( ℑ ‘ 𝐵 ) ) | 
						
							| 76 | 75 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  - ( ℑ ‘ - 𝐵 )  ↔  0  ≤  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 77 | 76 75 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 78 | 77 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥  =  ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 ) | 
						
							| 79 | 71 78 | oveq12d | ⊢ ( 𝜑  →  ( ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥 )  =  ( ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 80 | 67 79 | eqtr4d | ⊢ ( 𝜑  →  - ( ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 )  =  ( ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 81 | 12 13 | itgreval | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  =  ( ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 82 | 81 | negeqd | ⊢ ( 𝜑  →  - ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  =  - ( ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 83 | 33 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ - 𝐵 )  ∈  ℝ ) | 
						
							| 84 | 37 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ - 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 85 | 83 84 | itgreval | ⊢ ( 𝜑  →  ∫ 𝐴 ( ℑ ‘ - 𝐵 )  d 𝑥  =  ( ∫ 𝐴 if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 )  d 𝑥 ) ) | 
						
							| 86 | 80 82 85 | 3eqtr4d | ⊢ ( 𝜑  →  - ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥  =  ∫ 𝐴 ( ℑ ‘ - 𝐵 )  d 𝑥 ) | 
						
							| 87 | 86 | oveq2d | ⊢ ( 𝜑  →  ( i  ·  - ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  =  ( i  ·  ∫ 𝐴 ( ℑ ‘ - 𝐵 )  d 𝑥 ) ) | 
						
							| 88 | 55 87 | eqtr3d | ⊢ ( 𝜑  →  - ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 )  =  ( i  ·  ∫ 𝐴 ( ℑ ‘ - 𝐵 )  d 𝑥 ) ) | 
						
							| 89 | 53 88 | oveq12d | ⊢ ( 𝜑  →  ( - ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  - ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  =  ( ∫ 𝐴 ( ℜ ‘ - 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ - 𝐵 )  d 𝑥 ) ) ) | 
						
							| 90 | 17 89 | eqtrd | ⊢ ( 𝜑  →  - ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) )  =  ( ∫ 𝐴 ( ℜ ‘ - 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ - 𝐵 )  d 𝑥 ) ) ) | 
						
							| 91 | 1 2 | itgcnval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) ) | 
						
							| 92 | 91 | negeqd | ⊢ ( 𝜑  →  - ∫ 𝐴 𝐵  d 𝑥  =  - ( ∫ 𝐴 ( ℜ ‘ 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ 𝐵 )  d 𝑥 ) ) ) | 
						
							| 93 | 33 35 | itgcnval | ⊢ ( 𝜑  →  ∫ 𝐴 - 𝐵  d 𝑥  =  ( ∫ 𝐴 ( ℜ ‘ - 𝐵 )  d 𝑥  +  ( i  ·  ∫ 𝐴 ( ℑ ‘ - 𝐵 )  d 𝑥 ) ) ) | 
						
							| 94 | 90 92 93 | 3eqtr4d | ⊢ ( 𝜑  →  - ∫ 𝐴 𝐵  d 𝑥  =  ∫ 𝐴 - 𝐵  d 𝑥 ) |