| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgparts.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 2 |  | itgparts.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 3 |  | itgparts.le | ⊢ ( 𝜑  →  𝑋  ≤  𝑌 ) | 
						
							| 4 |  | itgparts.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 5 |  | itgparts.c | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 6 |  | itgparts.b | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 7 |  | itgparts.d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 8 |  | itgparts.ad | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐴  ·  𝐷 ) )  ∈  𝐿1 ) | 
						
							| 9 |  | itgparts.bc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐵  ·  𝐶 ) )  ∈  𝐿1 ) | 
						
							| 10 |  | itgparts.da | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) ) | 
						
							| 11 |  | itgparts.dc | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 ) ) | 
						
							| 12 |  | itgparts.e | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝐴  ·  𝐶 )  =  𝐸 ) | 
						
							| 13 |  | itgparts.f | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑌 )  →  ( 𝐴  ·  𝐶 )  =  𝐹 ) | 
						
							| 14 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 15 | 6 14 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 16 | 15 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 17 |  | ioossicc | ⊢ ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 ) | 
						
							| 18 | 17 | sseli | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  →  𝑥  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 19 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 20 | 5 19 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 21 | 20 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 22 | 18 21 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 23 | 16 22 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( 𝐵  ·  𝐶 )  ∈  ℂ ) | 
						
							| 24 | 23 9 | itgcl | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥  ∈  ℂ ) | 
						
							| 25 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 26 | 4 25 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 27 | 26 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 28 | 18 27 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 29 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 30 | 7 29 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 31 | 30 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 32 | 28 31 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( 𝐴  ·  𝐷 )  ∈  ℂ ) | 
						
							| 33 | 32 8 | itgcl | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴  ·  𝐷 )  d 𝑥  ∈  ℂ ) | 
						
							| 34 | 24 33 | pncan2d | ⊢ ( 𝜑  →  ( ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥  +  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴  ·  𝐷 )  d 𝑥 )  −  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥 )  =  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴  ·  𝐷 )  d 𝑥 ) | 
						
							| 35 | 23 9 32 8 | itgadd | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) )  d 𝑥  =  ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥  +  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴  ·  𝐷 )  d 𝑥 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 )  =  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑡 ) ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑡 ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 ) | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑥  D | 
						
							| 40 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) | 
						
							| 41 | 38 39 40 | nfov | ⊢ Ⅎ 𝑥 ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑥 𝑡 | 
						
							| 43 | 41 42 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑡 ) | 
						
							| 44 | 36 37 43 | cbvitg | ⊢ ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑡 )  d 𝑡 | 
						
							| 45 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 46 | 45 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 47 |  | iccssre | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝑋 [,] 𝑌 )  ⊆  ℝ ) | 
						
							| 48 | 1 2 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 [,] 𝑌 )  ⊆  ℝ ) | 
						
							| 49 | 27 21 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( 𝐴  ·  𝐶 )  ∈  ℂ ) | 
						
							| 50 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 51 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 52 |  | iccntr | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) )  =  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 53 | 1 2 52 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) )  =  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 54 | 46 48 49 50 51 53 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 55 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 56 | 55 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 57 | 46 48 27 50 51 53 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐴 ) ) ) | 
						
							| 58 | 57 10 | eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) ) | 
						
							| 59 | 46 48 21 50 51 53 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 ) ) ) | 
						
							| 60 | 59 11 | eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 ) ) | 
						
							| 61 | 56 28 16 58 22 31 60 | dvmptmul | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) ) ) ) | 
						
							| 62 | 31 28 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( 𝐷  ·  𝐴 )  =  ( 𝐴  ·  𝐷 ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) )  =  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) | 
						
							| 64 | 63 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐷  ·  𝐴 ) ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) ) | 
						
							| 65 | 54 61 64 | 3eqtrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) ) | 
						
							| 66 | 51 | addcn | ⊢  +   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 67 | 66 | a1i | ⊢ ( 𝜑  →   +   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 68 |  | resmpt | ⊢ ( ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 )  ↾  ( 𝑋 (,) 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 ) ) | 
						
							| 69 | 17 68 | ax-mp | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 )  ↾  ( 𝑋 (,) 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 ) | 
						
							| 70 |  | rescncf | ⊢ ( ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 )  ↾  ( 𝑋 (,) 𝑌 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) | 
						
							| 71 | 17 5 70 | mpsyl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐶 )  ↾  ( 𝑋 (,) 𝑌 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 72 | 69 71 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 73 | 6 72 | mulcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐵  ·  𝐶 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 74 |  | resmpt | ⊢ ( ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ↾  ( 𝑋 (,) 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐴 ) ) | 
						
							| 75 | 17 74 | ax-mp | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ↾  ( 𝑋 (,) 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐴 ) | 
						
							| 76 |  | rescncf | ⊢ ( ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ↾  ( 𝑋 (,) 𝑌 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) | 
						
							| 77 | 17 4 76 | mpsyl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ↾  ( 𝑋 (,) 𝑌 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 78 | 75 77 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 79 | 78 7 | mulcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐴  ·  𝐷 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 80 | 51 67 73 79 | cncfmpt2f | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 81 | 65 80 | eqeltrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 82 | 23 9 32 8 | ibladd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) )  ∈  𝐿1 ) | 
						
							| 83 | 65 82 | eqeltrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) )  ∈  𝐿1 ) | 
						
							| 84 | 4 5 | mulcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 85 | 1 2 3 81 83 84 | ftc2 | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑡 )  d 𝑡  =  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑌 )  −  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑋 ) ) ) | 
						
							| 86 | 44 85 | eqtrid | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 )  d 𝑥  =  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑌 )  −  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑋 ) ) ) | 
						
							| 87 | 65 | fveq1d | ⊢ ( 𝜑  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) ‘ 𝑥 ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) ‘ 𝑥 ) ) | 
						
							| 89 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝑥  ∈  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 90 |  | ovex | ⊢ ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) )  ∈  V | 
						
							| 91 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) | 
						
							| 92 | 91 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ∧  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) )  ∈  V )  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) ‘ 𝑥 )  =  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) | 
						
							| 93 | 89 90 92 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) ‘ 𝑥 )  =  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) | 
						
							| 94 | 88 93 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 )  =  ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) ) ) | 
						
							| 95 | 94 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ) ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) )  d 𝑥 ) | 
						
							| 96 | 1 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 97 | 2 | rexrd | ⊢ ( 𝜑  →  𝑌  ∈  ℝ* ) | 
						
							| 98 |  | ubicc2 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑌  ∈  ℝ*  ∧  𝑋  ≤  𝑌 )  →  𝑌  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 99 | 96 97 3 98 | syl3anc | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 100 |  | ovex | ⊢ ( 𝐴  ·  𝐶 )  ∈  V | 
						
							| 101 | 100 | csbex | ⊢ ⦋ 𝑌  /  𝑥 ⦌ ( 𝐴  ·  𝐶 )  ∈  V | 
						
							| 102 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) )  =  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) | 
						
							| 103 | 102 | fvmpts | ⊢ ( ( 𝑌  ∈  ( 𝑋 [,] 𝑌 )  ∧  ⦋ 𝑌  /  𝑥 ⦌ ( 𝐴  ·  𝐶 )  ∈  V )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑌 )  =  ⦋ 𝑌  /  𝑥 ⦌ ( 𝐴  ·  𝐶 ) ) | 
						
							| 104 | 99 101 103 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑌 )  =  ⦋ 𝑌  /  𝑥 ⦌ ( 𝐴  ·  𝐶 ) ) | 
						
							| 105 | 2 13 | csbied | ⊢ ( 𝜑  →  ⦋ 𝑌  /  𝑥 ⦌ ( 𝐴  ·  𝐶 )  =  𝐹 ) | 
						
							| 106 | 104 105 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑌 )  =  𝐹 ) | 
						
							| 107 |  | lbicc2 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑌  ∈  ℝ*  ∧  𝑋  ≤  𝑌 )  →  𝑋  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 108 | 96 97 3 107 | syl3anc | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 109 | 100 | csbex | ⊢ ⦋ 𝑋  /  𝑥 ⦌ ( 𝐴  ·  𝐶 )  ∈  V | 
						
							| 110 | 102 | fvmpts | ⊢ ( ( 𝑋  ∈  ( 𝑋 [,] 𝑌 )  ∧  ⦋ 𝑋  /  𝑥 ⦌ ( 𝐴  ·  𝐶 )  ∈  V )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑋 )  =  ⦋ 𝑋  /  𝑥 ⦌ ( 𝐴  ·  𝐶 ) ) | 
						
							| 111 | 108 109 110 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑋 )  =  ⦋ 𝑋  /  𝑥 ⦌ ( 𝐴  ·  𝐶 ) ) | 
						
							| 112 | 1 12 | csbied | ⊢ ( 𝜑  →  ⦋ 𝑋  /  𝑥 ⦌ ( 𝐴  ·  𝐶 )  =  𝐸 ) | 
						
							| 113 | 111 112 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑋 )  =  𝐸 ) | 
						
							| 114 | 106 113 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑌 )  −  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ( 𝐴  ·  𝐶 ) ) ‘ 𝑋 ) )  =  ( 𝐹  −  𝐸 ) ) | 
						
							| 115 | 86 95 114 | 3eqtr3d | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵  ·  𝐶 )  +  ( 𝐴  ·  𝐷 ) )  d 𝑥  =  ( 𝐹  −  𝐸 ) ) | 
						
							| 116 | 35 115 | eqtr3d | ⊢ ( 𝜑  →  ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥  +  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴  ·  𝐷 )  d 𝑥 )  =  ( 𝐹  −  𝐸 ) ) | 
						
							| 117 | 116 | oveq1d | ⊢ ( 𝜑  →  ( ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥  +  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴  ·  𝐷 )  d 𝑥 )  −  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥 )  =  ( ( 𝐹  −  𝐸 )  −  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥 ) ) | 
						
							| 118 | 34 117 | eqtr3d | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴  ·  𝐷 )  d 𝑥  =  ( ( 𝐹  −  𝐸 )  −  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵  ·  𝐶 )  d 𝑥 ) ) |