Step |
Hyp |
Ref |
Expression |
1 |
|
itgparts.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
itgparts.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
itgparts.le |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
4 |
|
itgparts.a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
5 |
|
itgparts.c |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
6 |
|
itgparts.b |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
7 |
|
itgparts.d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
8 |
|
itgparts.ad |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐷 ) ) ∈ 𝐿1 ) |
9 |
|
itgparts.bc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐵 · 𝐶 ) ) ∈ 𝐿1 ) |
10 |
|
itgparts.da |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
11 |
|
itgparts.dc |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ) |
12 |
|
itgparts.e |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐴 · 𝐶 ) = 𝐸 ) |
13 |
|
itgparts.f |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝐴 · 𝐶 ) = 𝐹 ) |
14 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
16 |
15
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐵 ∈ ℂ ) |
17 |
|
ioossicc |
⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) |
18 |
17
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
19 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
21 |
20
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐶 ∈ ℂ ) |
22 |
18 21
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐶 ∈ ℂ ) |
23 |
16 22
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
24 |
23 9
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ∈ ℂ ) |
25 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
26 |
4 25
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
27 |
26
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ℂ ) |
28 |
18 27
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ℂ ) |
29 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
30 |
7 29
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
31 |
30
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ ℂ ) |
32 |
28 31
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
33 |
32 8
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ∈ ℂ ) |
34 |
24 33
|
pncan2d |
⊢ ( 𝜑 → ( ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) |
35 |
23 9 32 8
|
itgadd |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) d 𝑥 = ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
39 |
|
nfcv |
⊢ Ⅎ 𝑥 D |
40 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) |
41 |
38 39 40
|
nfov |
⊢ Ⅎ 𝑥 ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) |
42 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑡 |
43 |
41 42
|
nffv |
⊢ Ⅎ 𝑥 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) |
44 |
36 37 43
|
cbvitg |
⊢ ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) d 𝑡 |
45 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
46 |
45
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
47 |
|
iccssre |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
48 |
1 2 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
49 |
27 21
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
50 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
51 |
50
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
52 |
|
iccntr |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
53 |
1 2 52
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
54 |
46 48 49 51 50 53
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ) |
55 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
56 |
55
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
57 |
46 48 27 51 50 53
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) ) |
58 |
57 10
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
59 |
46 48 21 51 50 53
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ) ) |
60 |
59 11
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ) |
61 |
56 28 16 58 22 31 60
|
dvmptmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) ) |
62 |
31 28
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐷 · 𝐴 ) = ( 𝐴 · 𝐷 ) ) |
63 |
62
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
64 |
63
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ) |
65 |
54 61 64
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ) |
66 |
50
|
addcn |
⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
67 |
66
|
a1i |
⊢ ( 𝜑 → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
68 |
|
resmpt |
⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ) |
69 |
17 68
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) |
70 |
|
rescncf |
⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) |
71 |
17 5 70
|
mpsyl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
72 |
69 71
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
73 |
6 72
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐵 · 𝐶 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
74 |
|
resmpt |
⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) |
75 |
17 74
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) |
76 |
|
rescncf |
⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) |
77 |
17 4 76
|
mpsyl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
78 |
75 77
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
79 |
78 7
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐷 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
80 |
50 67 73 79
|
cncfmpt2f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
81 |
65 80
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
82 |
23 9 32 8
|
ibladd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ∈ 𝐿1 ) |
83 |
65 82
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ∈ 𝐿1 ) |
84 |
4 5
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
85 |
1 2 3 81 83 84
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) ) ) |
86 |
44 85
|
syl5eq |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) ) ) |
87 |
65
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) ) |
89 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) |
90 |
|
ovex |
⊢ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ∈ V |
91 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
92 |
91
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ∧ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
93 |
89 90 92
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
94 |
88 93
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
95 |
94
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) d 𝑥 ) |
96 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
97 |
2
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
98 |
|
ubicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
99 |
96 97 3 98
|
syl3anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
100 |
|
ovex |
⊢ ( 𝐴 · 𝐶 ) ∈ V |
101 |
100
|
csbex |
⊢ ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V |
102 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) |
103 |
102
|
fvmpts |
⊢ ( ( 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ∧ ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) = ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
104 |
99 101 103
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) = ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
105 |
2 13
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) = 𝐹 ) |
106 |
104 105
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) = 𝐹 ) |
107 |
|
lbicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
108 |
96 97 3 107
|
syl3anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
109 |
100
|
csbex |
⊢ ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V |
110 |
102
|
fvmpts |
⊢ ( ( 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ∧ ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) = ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
111 |
108 109 110
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) = ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
112 |
1 12
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) = 𝐸 ) |
113 |
111 112
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) = 𝐸 ) |
114 |
106 113
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) ) = ( 𝐹 − 𝐸 ) ) |
115 |
86 95 114
|
3eqtr3d |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) d 𝑥 = ( 𝐹 − 𝐸 ) ) |
116 |
35 115
|
eqtr3d |
⊢ ( 𝜑 → ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) = ( 𝐹 − 𝐸 ) ) |
117 |
116
|
oveq1d |
⊢ ( 𝜑 → ( ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) = ( ( 𝐹 − 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) ) |
118 |
34 117
|
eqtr3d |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 = ( ( 𝐹 − 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) ) |