Step |
Hyp |
Ref |
Expression |
1 |
|
itgpowd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
itgpowd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
itgpowd.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
itgpowd.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
7 |
6
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
8 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
11 |
9 10
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
12 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
14 |
12 13
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
15 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
16 |
|
expcncf |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
18 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
19 |
11 17 18
|
sylc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
20 |
15 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
21 |
|
cnicciblnc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ 𝐿1 ) |
22 |
1 2 20 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ 𝐿1 ) |
23 |
14 22
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ∈ ℂ ) |
24 |
6
|
nnne0d |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≠ 0 ) |
25 |
7 14 22
|
itgmulc2 |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
26 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
27 |
|
oveq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ↑ 𝑁 ) = ( 𝑥 ↑ 𝑁 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑡 = 𝑥 ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
32 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
34 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
35 |
34 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
36 |
31 35
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ∈ ℂ ) |
37 |
26 29 30 36
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
38 |
37
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
39 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
40 |
39
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
41 |
10
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
42 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
43 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
44 |
43
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
45 |
4 44
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
47 |
42 46
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
48 |
4
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑁 ∈ ℂ ) |
50 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℂ ) |
51 |
49 50
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑁 + 1 ) ∈ ℂ ) |
52 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑁 ∈ ℕ0 ) |
53 |
42 52
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
54 |
51 53
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑡 ∈ ℂ ) |
56 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
57 |
55 56
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
58 |
57
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) : ℂ ⟶ ℂ ) |
59 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
60 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑁 + 1 ) ∈ ℂ ) |
61 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
62 |
55 61
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
63 |
60 62
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
64 |
63
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) : ℂ ⟶ ℂ ) |
65 |
|
dvexp |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) ) |
66 |
6 65
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) ) |
67 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
68 |
48 67
|
pncand |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑡 ↑ 𝑁 ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) = ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) |
71 |
70
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
72 |
66 71
|
eqtrd |
⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
73 |
72
|
feq1d |
⊢ ( 𝜑 → ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) : ℂ ⟶ ℂ ↔ ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) : ℂ ⟶ ℂ ) ) |
74 |
64 73
|
mpbird |
⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) : ℂ ⟶ ℂ ) |
75 |
74
|
fdmd |
⊢ ( 𝜑 → dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ℂ ) |
76 |
10 75
|
sseqtrrid |
⊢ ( 𝜑 → ℝ ⊆ dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) |
77 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) ) → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) ) |
78 |
40 58 59 76 77
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) ) |
79 |
72
|
reseq1d |
⊢ ( 𝜑 → ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) = ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) ) |
80 |
78 79
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) ) |
81 |
|
resmpt |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
82 |
10 81
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ℝ D ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) |
84 |
|
resmpt |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
85 |
10 84
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
86 |
80 83 85
|
3eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
87 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
88 |
87
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
89 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
90 |
1 2 89
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
91 |
40 47 54 86 9 88 87 90
|
dvmptres2 |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
92 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
93 |
92 10
|
sstri |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
94 |
93
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
95 |
|
cncfmptc |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
96 |
7 94 59 95
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
97 |
|
resmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
98 |
93 97
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
99 |
|
expcncf |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
100 |
4 99
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
101 |
|
rescncf |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) |
102 |
94 100 101
|
sylc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
103 |
98 102
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
104 |
96 103
|
mulcncf |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
105 |
91 104
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
106 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
107 |
106
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
108 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℂ ) |
109 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℂ ) |
110 |
108 109
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
111 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ℂ ) |
112 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
113 |
111 112
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
114 |
110 113
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
115 |
|
cncfmptc |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
116 |
7 11 59 115
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
117 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
118 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
119 |
11 100 118
|
sylc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
120 |
117 119
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
121 |
116 120
|
mulcncf |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
122 |
|
cnicciblnc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
123 |
1 2 121 122
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
124 |
33 107 114 123
|
iblss |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
125 |
91 124
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ∈ 𝐿1 ) |
126 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
127 |
|
expcncf |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
128 |
45 127
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
129 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
130 |
11 128 129
|
sylc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
131 |
126 130
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
132 |
1 2 3 105 125 131
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) − ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) ) ) |
133 |
91
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) ) |
134 |
133
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) ) |
135 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
136 |
134 135
|
syl |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
137 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
138 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐵 ) → 𝑡 = 𝐵 ) |
139 |
138
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐵 ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) = ( 𝐵 ↑ ( 𝑁 + 1 ) ) ) |
140 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
141 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
142 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
143 |
140 141 3 142
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
144 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
145 |
144 45
|
expcld |
⊢ ( 𝜑 → ( 𝐵 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
146 |
137 139 143 145
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) = ( 𝐵 ↑ ( 𝑁 + 1 ) ) ) |
147 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐴 ) → 𝑡 = 𝐴 ) |
148 |
147
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝐴 ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) = ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) |
149 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
150 |
140 141 3 149
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
151 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
152 |
151 45
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
153 |
137 148 150 152
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) = ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) |
154 |
146 153
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) − ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) ) = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
155 |
132 136 154
|
3eqtr3d |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
156 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
157 |
156 14
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ∈ ℂ ) |
158 |
1 2 157
|
itgioo |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
159 |
38 155 158
|
3eqtr3rd |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
160 |
25 159
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ) = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
161 |
7 23 24 160
|
mvllmuld |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 = ( ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ) |