| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgrecl.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | itgrecl.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 | 1 2 | itgrevallem1 | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 4 | 1 | iblrelem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 5 | 2 4 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 6 |  | resubcl | ⊢ ( ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ )  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ )  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 9 | 3 8 | eqeltrd | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  ∈  ℝ ) |