| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblrelem.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | itgreval.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 | 1 2 | itgrevallem1 | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 4 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 5 |  | ifcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 6 | 1 4 5 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 7 | 1 | iblrelem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 8 | 2 7 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 9 | 8 | simp1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 10 | 1 9 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 11 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) | 
						
							| 12 | 11 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) ) | 
						
							| 13 | 12 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) ) ) | 
						
							| 14 | 8 | simp2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 15 | 13 14 | eqeltrrid | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 16 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 17 | 4 1 16 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 18 | 6 17 | iblpos | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 19 | 10 15 18 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 20 | 6 19 17 | itgposval | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) ) ) ) | 
						
							| 21 | 20 13 | eqtr4di | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) ) ) | 
						
							| 22 | 1 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 23 |  | ifcl | ⊢ ( ( - 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 24 | 22 4 23 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 25 | 1 9 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  MblFn ) | 
						
							| 26 | 22 25 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 27 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) | 
						
							| 28 | 27 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) | 
						
							| 29 | 28 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) ) | 
						
							| 30 | 8 | simp3d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 31 | 29 30 | eqeltrrid | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 32 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐵  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 33 | 4 22 32 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 34 | 24 33 | iblpos | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 35 | 26 31 34 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 36 | 24 35 33 | itgposval | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ,  0 ) ) ) ) | 
						
							| 37 | 36 29 | eqtr4di | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 38 | 21 37 | oveq12d | ⊢ ( 𝜑  →  ( ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  −  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 39 | 3 38 | eqtr4d | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) ) |