Step |
Hyp |
Ref |
Expression |
1 |
|
itgsincmulx.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
itgsincmulx.an0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
itgsincmulx.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
itgsincmulx.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
itgsincmulx.blec |
⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) |
6 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
9 |
7 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
10 |
9
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
11 |
10
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ≠ 0 ) |
13 |
11 7 12
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ∈ ℂ ) |
14 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
15 |
14
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
16 |
9
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
17 |
16
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
18 |
7 17
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
19 |
18
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
20 |
|
dvcosax |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
22 |
15 10 18 21
|
dvmptneg |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ - ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
23 |
15 11 19 22 1 2
|
dvmptdivc |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) |
24 |
18 7 12
|
divnegd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = - ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) |
26 |
17 7 12
|
divcan3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
27 |
26
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - ( ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = - - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
28 |
16
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → - - ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
29 |
25 27 28
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
30 |
29
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( - ( 𝐴 · - ( sin ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
31 |
23 30
|
eqtrd |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
32 |
6 13 31 16 3 4
|
dvmptresicc |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
33 |
32
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑥 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑥 ) ) |
35 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
36 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑥 ) ) |
37 |
36
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) ∧ 𝑦 = 𝑥 ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
40 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ∈ ℂ ) |
41 |
|
ioosscn |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ℂ |
42 |
41 39
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ℂ ) |
43 |
40 42
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
44 |
43
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( sin ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
45 |
35 38 39 44
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑥 ) = ( sin ‘ ( 𝐴 · 𝑥 ) ) ) |
46 |
34 45
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( sin ‘ ( 𝐴 · 𝑥 ) ) = ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) ) |
47 |
46
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( sin ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
48 |
|
sincn |
⊢ sin ∈ ( ℂ –cn→ ℂ ) |
49 |
48
|
a1i |
⊢ ( 𝜑 → sin ∈ ( ℂ –cn→ ℂ ) ) |
50 |
41
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ℂ ) |
51 |
|
ssid |
⊢ ℂ ⊆ ℂ |
52 |
51
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
53 |
50 1 52
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
54 |
50 52
|
idcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
55 |
53 54
|
mulcncf |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
56 |
49 55
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
57 |
32 56
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
58 |
|
ioossicc |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) |
59 |
58
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) ) |
60 |
|
ioombl |
⊢ ( 𝐵 (,) 𝐶 ) ∈ dom vol |
61 |
60
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ∈ dom vol ) |
62 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐴 ∈ ℂ ) |
63 |
3 4
|
iccssred |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
64 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
65 |
63 64
|
sstrdi |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℂ ) |
66 |
65
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑦 ∈ ℂ ) |
67 |
62 66
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
68 |
67
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
69 |
65 1 52
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
70 |
65 52
|
idcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
71 |
69 70
|
mulcncf |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
72 |
49 71
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
73 |
|
cniccibl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
74 |
3 4 72 73
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
75 |
59 61 68 74
|
iblss |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
76 |
32 75
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ 𝐿1 ) |
77 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
78 |
77
|
a1i |
⊢ ( 𝜑 → cos ∈ ( ℂ –cn→ ℂ ) ) |
79 |
78 71
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
80 |
79
|
negcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ - ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
81 |
2
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = 0 ) |
82 |
|
elsng |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ { 0 } ↔ 𝐴 = 0 ) ) |
83 |
1 82
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ { 0 } ↔ 𝐴 = 0 ) ) |
84 |
81 83
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐴 ∈ { 0 } ) |
85 |
1 84
|
eldifd |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
86 |
|
difssd |
⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
87 |
65 85 86
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ( ℂ ∖ { 0 } ) ) ) |
88 |
80 87
|
divcncf |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
89 |
3 4 5 57 76 88
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) ) |
90 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) |
91 |
|
oveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐶 ) ) |
92 |
91
|
fveq2d |
⊢ ( 𝑦 = 𝐶 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝐶 ) ) ) |
93 |
92
|
negeqd |
⊢ ( 𝑦 = 𝐶 → - ( cos ‘ ( 𝐴 · 𝑦 ) ) = - ( cos ‘ ( 𝐴 · 𝐶 ) ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝑦 = 𝐶 → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐶 ) → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
96 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
97 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
98 |
|
ubicc2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) |
99 |
96 97 5 98
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) |
100 |
|
ovexd |
⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ V ) |
101 |
90 95 99 100
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
102 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) |
103 |
102
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝐵 ) ) ) |
104 |
103
|
negeqd |
⊢ ( 𝑦 = 𝐵 → - ( cos ‘ ( 𝐴 · 𝑦 ) ) = - ( cos ‘ ( 𝐴 · 𝐵 ) ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
107 |
|
lbicc2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
108 |
96 97 5 107
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
109 |
|
ovexd |
⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ∈ V ) |
110 |
90 106 108 109
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
111 |
101 110
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
112 |
3
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
113 |
1 112
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
114 |
113
|
coscld |
⊢ ( 𝜑 → ( cos ‘ ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
115 |
114 1 2
|
divnegd |
⊢ ( 𝜑 → - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
116 |
115
|
eqcomd |
⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) = - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
117 |
116
|
oveq2d |
⊢ ( 𝜑 → ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( - ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
118 |
4
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
119 |
1 118
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
120 |
119
|
coscld |
⊢ ( 𝜑 → ( cos ‘ ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
121 |
120
|
negcld |
⊢ ( 𝜑 → - ( cos ‘ ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
122 |
121 1 2
|
divcld |
⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ ℂ ) |
123 |
114 1 2
|
divcld |
⊢ ( 𝜑 → ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ∈ ℂ ) |
124 |
122 123
|
subnegd |
⊢ ( 𝜑 → ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − - ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) + ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
125 |
111 117 124
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) + ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
126 |
122 123
|
addcomd |
⊢ ( 𝜑 → ( ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) + ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
127 |
120 1 2
|
divnegd |
⊢ ( 𝜑 → - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) = ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
128 |
127
|
eqcomd |
⊢ ( 𝜑 → ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) = - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
129 |
128
|
oveq2d |
⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
130 |
120 1 2
|
divcld |
⊢ ( 𝜑 → ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ ℂ ) |
131 |
123 130
|
negsubd |
⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + - ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) − ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
132 |
114 120 1 2
|
divsubdird |
⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) − ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) ) |
133 |
132
|
eqcomd |
⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) − ( ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |
134 |
129 131 133
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) + ( - ( cos ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |
135 |
125 126 134
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( - ( cos ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |
136 |
47 89 135
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( sin ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ( ( ( cos ‘ ( 𝐴 · 𝐵 ) ) − ( cos ‘ ( 𝐴 · 𝐶 ) ) ) / 𝐴 ) ) |