Step |
Hyp |
Ref |
Expression |
1 |
|
itgspliticc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
itgspliticc.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
itgspliticc.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) |
4 |
|
itgspliticc.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) → 𝐷 ∈ 𝑉 ) |
5 |
|
itgspliticc.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
6 |
|
itgspliticc.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
7 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
8 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
10 |
3 9
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) |
11 |
10
|
simp1d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
12 |
11
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
13 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
14 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
15 |
|
xrmaxle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝑧 ↔ ( 𝐴 ≤ 𝑧 ∧ 𝐵 ≤ 𝑧 ) ) ) |
16 |
|
xrlemin |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑧 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ↔ ( 𝑧 ≤ 𝐵 ∧ 𝑧 ≤ 𝐶 ) ) ) |
17 |
14 15 16
|
ixxin |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) → ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) = ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) [,] if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) ) |
18 |
7 12 12 13 17
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) = ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) [,] if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) ) |
19 |
10
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
20 |
19
|
iftrued |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = 𝐵 ) |
21 |
10
|
simp3d |
⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) |
22 |
21
|
iftrued |
⊢ ( 𝜑 → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) = 𝐵 ) |
23 |
20 22
|
oveq12d |
⊢ ( 𝜑 → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) [,] if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) = ( 𝐵 [,] 𝐵 ) ) |
24 |
|
iccid |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
25 |
12 24
|
syl |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
26 |
18 23 25
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) = { 𝐵 } ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) ) = ( vol* ‘ { 𝐵 } ) ) |
28 |
|
ovolsn |
⊢ ( 𝐵 ∈ ℝ → ( vol* ‘ { 𝐵 } ) = 0 ) |
29 |
11 28
|
syl |
⊢ ( 𝜑 → ( vol* ‘ { 𝐵 } ) = 0 ) |
30 |
27 29
|
eqtrd |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) ) = 0 ) |
31 |
|
iccsplit |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) |
32 |
1 2 3 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) |
33 |
30 32 4 5 6
|
itgsplit |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐶 ) 𝐷 d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝐷 d 𝑥 + ∫ ( 𝐵 [,] 𝐶 ) 𝐷 d 𝑥 ) ) |