| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgspliticc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | itgspliticc.2 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 3 |  | itgspliticc.3 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 4 |  | itgspliticc.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐶 ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 5 |  | itgspliticc.5 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  𝐷 )  ∈  𝐿1 ) | 
						
							| 6 |  | itgspliticc.6 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐶 )  ↦  𝐷 )  ∈  𝐿1 ) | 
						
							| 7 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 8 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐶 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) ) | 
						
							| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐶 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) ) | 
						
							| 10 | 3 9 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) | 
						
							| 11 | 10 | simp1d | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 12 | 11 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 13 | 2 | rexrd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 14 |  | df-icc | ⊢ [,]  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) } ) | 
						
							| 15 |  | xrmaxle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑧  ∈  ℝ* )  →  ( if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 )  ≤  𝑧  ↔  ( 𝐴  ≤  𝑧  ∧  𝐵  ≤  𝑧 ) ) ) | 
						
							| 16 |  | xrlemin | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑧  ≤  if ( 𝐵  ≤  𝐶 ,  𝐵 ,  𝐶 )  ↔  ( 𝑧  ≤  𝐵  ∧  𝑧  ≤  𝐶 ) ) ) | 
						
							| 17 | 14 15 16 | ixxin | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* ) )  →  ( ( 𝐴 [,] 𝐵 )  ∩  ( 𝐵 [,] 𝐶 ) )  =  ( if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 ) [,] if ( 𝐵  ≤  𝐶 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 18 | 7 12 12 13 17 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ∩  ( 𝐵 [,] 𝐶 ) )  =  ( if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 ) [,] if ( 𝐵  ≤  𝐶 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 19 | 10 | simp2d | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 20 | 19 | iftrued | ⊢ ( 𝜑  →  if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 )  =  𝐵 ) | 
						
							| 21 | 10 | simp3d | ⊢ ( 𝜑  →  𝐵  ≤  𝐶 ) | 
						
							| 22 | 21 | iftrued | ⊢ ( 𝜑  →  if ( 𝐵  ≤  𝐶 ,  𝐵 ,  𝐶 )  =  𝐵 ) | 
						
							| 23 | 20 22 | oveq12d | ⊢ ( 𝜑  →  ( if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 ) [,] if ( 𝐵  ≤  𝐶 ,  𝐵 ,  𝐶 ) )  =  ( 𝐵 [,] 𝐵 ) ) | 
						
							| 24 |  | iccid | ⊢ ( 𝐵  ∈  ℝ*  →  ( 𝐵 [,] 𝐵 )  =  { 𝐵 } ) | 
						
							| 25 | 12 24 | syl | ⊢ ( 𝜑  →  ( 𝐵 [,] 𝐵 )  =  { 𝐵 } ) | 
						
							| 26 | 18 23 25 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ∩  ( 𝐵 [,] 𝐶 ) )  =  { 𝐵 } ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝜑  →  ( vol* ‘ ( ( 𝐴 [,] 𝐵 )  ∩  ( 𝐵 [,] 𝐶 ) ) )  =  ( vol* ‘ { 𝐵 } ) ) | 
						
							| 28 |  | ovolsn | ⊢ ( 𝐵  ∈  ℝ  →  ( vol* ‘ { 𝐵 } )  =  0 ) | 
						
							| 29 | 11 28 | syl | ⊢ ( 𝜑  →  ( vol* ‘ { 𝐵 } )  =  0 ) | 
						
							| 30 | 27 29 | eqtrd | ⊢ ( 𝜑  →  ( vol* ‘ ( ( 𝐴 [,] 𝐵 )  ∩  ( 𝐵 [,] 𝐶 ) ) )  =  0 ) | 
						
							| 31 |  | iccsplit | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐵  ∈  ( 𝐴 [,] 𝐶 ) )  →  ( 𝐴 [,] 𝐶 )  =  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 32 | 1 2 3 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐶 )  =  ( ( 𝐴 [,] 𝐵 )  ∪  ( 𝐵 [,] 𝐶 ) ) ) | 
						
							| 33 | 30 32 4 5 6 | itgsplit | ⊢ ( 𝜑  →  ∫ ( 𝐴 [,] 𝐶 ) 𝐷  d 𝑥  =  ( ∫ ( 𝐴 [,] 𝐵 ) 𝐷  d 𝑥  +  ∫ ( 𝐵 [,] 𝐶 ) 𝐷  d 𝑥 ) ) |