Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
3 |
2
|
itgeq2dv |
⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) |
4 |
|
id |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵 ) |
5 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
6 |
5
|
iffalsed |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
8 |
4 7
|
itgss |
⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
9 |
3 8
|
eqtr3d |
⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |