Metamath Proof Explorer


Theorem itgss2

Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Assertion itgss2 ( 𝐴𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥𝐴 , 𝐶 , 0 ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 iftrue ( 𝑥𝐴 → if ( 𝑥𝐴 , 𝐶 , 0 ) = 𝐶 )
2 1 adantl ( ( 𝐴𝐵𝑥𝐴 ) → if ( 𝑥𝐴 , 𝐶 , 0 ) = 𝐶 )
3 2 itgeq2dv ( 𝐴𝐵 → ∫ 𝐴 if ( 𝑥𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 )
4 id ( 𝐴𝐵𝐴𝐵 )
5 eldifn ( 𝑥 ∈ ( 𝐵𝐴 ) → ¬ 𝑥𝐴 )
6 5 iffalsed ( 𝑥 ∈ ( 𝐵𝐴 ) → if ( 𝑥𝐴 , 𝐶 , 0 ) = 0 )
7 6 adantl ( ( 𝐴𝐵𝑥 ∈ ( 𝐵𝐴 ) ) → if ( 𝑥𝐴 , 𝐶 , 0 ) = 0 )
8 4 7 itgss ( 𝐴𝐵 → ∫ 𝐴 if ( 𝑥𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐵 if ( 𝑥𝐴 , 𝐶 , 0 ) d 𝑥 )
9 3 8 eqtr3d ( 𝐴𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥𝐴 , 𝐶 , 0 ) d 𝑥 )