| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgss3.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | itgss3.2 | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 3 |  | itgss3.3 | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐵  ∖  𝐴 ) )  =  0 ) | 
						
							| 4 |  | itgss3.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑦 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝐴 | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 0 | 
						
							| 9 | 6 7 8 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) | 
						
							| 10 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 11 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 12 | 10 11 | ifbieq1d | ⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) | 
						
							| 13 | 5 9 12 | cbvmpt | ⊢ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) | 
						
							| 14 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑦 𝐶 | 
						
							| 16 | 15 7 11 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑦  ∈  𝐴  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 17 |  | iftrue | ⊢ ( 𝑦  ∈  𝐴  →  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 )  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 18 | 17 | mpteq2ia | ⊢ ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  =  ( 𝑦  ∈  𝐴  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 19 | 16 18 | eqtr4i | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 21 | 19 20 | eqeltrrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 22 |  | iblmbf | ⊢ ( ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  𝐿1  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 24 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 25 | 24 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 26 | 25 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ℂ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ℂ ) | 
						
							| 28 | 19 | feq1i | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ ℂ  ↔  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) : 𝐴 ⟶ ℂ ) | 
						
							| 29 | 27 28 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) : 𝐴 ⟶ ℂ ) | 
						
							| 30 | 29 | fvmptelcdm | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  ∧  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 31 | 23 30 | mbfdm2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  𝐴  ∈  dom  vol ) | 
						
							| 32 |  | undif | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 33 | 1 32 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  dom  vol )  →  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 35 |  | id | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ∈  dom  vol ) | 
						
							| 36 | 2 | ssdifssd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝐴 )  ⊆  ℝ ) | 
						
							| 37 |  | nulmbl | ⊢ ( ( ( 𝐵  ∖  𝐴 )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝐵  ∖  𝐴 ) )  =  0 )  →  ( 𝐵  ∖  𝐴 )  ∈  dom  vol ) | 
						
							| 38 | 36 3 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝐴 )  ∈  dom  vol ) | 
						
							| 39 |  | unmbl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( 𝐵  ∖  𝐴 )  ∈  dom  vol )  →  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ∈  dom  vol ) | 
						
							| 40 | 35 38 39 | syl2anr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  dom  vol )  →  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ∈  dom  vol ) | 
						
							| 41 | 34 40 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  dom  vol )  →  𝐵  ∈  dom  vol ) | 
						
							| 42 | 31 41 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  𝐵  ∈  dom  vol ) | 
						
							| 43 |  | eldifn | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  𝐴 )  →  ¬  𝑦  ∈  𝐴 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  ∧  𝑦  ∈  ( 𝐵  ∖  𝐴 ) )  →  ¬  𝑦  ∈  𝐴 ) | 
						
							| 45 | 44 | iffalsed | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  ∧  𝑦  ∈  ( 𝐵  ∖  𝐴 ) )  →  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 )  =  0 ) | 
						
							| 46 | 14 42 30 45 21 | iblss2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 47 | 13 46 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 48 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 49 | 48 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 50 | 5 9 12 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) | 
						
							| 51 | 49 50 | eqtr3i | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) | 
						
							| 52 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 53 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 54 | 13 53 | eqeltrrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 55 |  | iblmbf | ⊢ ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  𝐿1  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 57 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 58 |  | ifcl | ⊢ ( ( 𝐶  ∈  ℂ  ∧  0  ∈  ℂ )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 59 | 4 57 58 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 60 | 59 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) : 𝐵 ⟶ ℂ ) | 
						
							| 61 | 13 | feq1i | ⊢ ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) ) : 𝐵 ⟶ ℂ  ↔  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) : 𝐵 ⟶ ℂ ) | 
						
							| 62 | 60 61 | sylib | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) : 𝐵 ⟶ ℂ ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) ) : 𝐵 ⟶ ℂ ) | 
						
							| 64 | 63 | fvmptelcdm | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  ∧  𝑦  ∈  𝐵 )  →  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 65 | 56 64 | mbfdm2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  𝐵  ∈  dom  vol ) | 
						
							| 66 |  | dfss4 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 67 | 1 66 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  dom  vol )  →  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 69 |  | id | ⊢ ( 𝐵  ∈  dom  vol  →  𝐵  ∈  dom  vol ) | 
						
							| 70 |  | difmbl | ⊢ ( ( 𝐵  ∈  dom  vol  ∧  ( 𝐵  ∖  𝐴 )  ∈  dom  vol )  →  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) )  ∈  dom  vol ) | 
						
							| 71 | 69 38 70 | syl2anr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  dom  vol )  →  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) )  ∈  dom  vol ) | 
						
							| 72 | 68 71 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  dom  vol )  →  𝐴  ∈  dom  vol ) | 
						
							| 73 | 65 72 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  𝐴  ∈  dom  vol ) | 
						
							| 74 | 52 73 64 54 | iblss | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝐴 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 75 | 51 74 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 )  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 76 | 47 75 | impbida | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  ↔  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1 ) ) | 
						
							| 77 | 67 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) )  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 78 | 77 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 79 | 78 48 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ( 𝐵  ∖  𝐴 ) ) )  →  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  =  𝐶 ) | 
						
							| 80 | 59 4 36 3 79 | itgeqa | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1  ↔  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1 )  ∧  ∫ 𝐵 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  d 𝑥  =  ∫ 𝐵 𝐶  d 𝑥 ) ) | 
						
							| 81 | 80 | simpld | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 ) )  ∈  𝐿1  ↔  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1 ) ) | 
						
							| 82 | 76 81 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  ↔  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1 ) ) | 
						
							| 83 |  | itgss2 | ⊢ ( 𝐴  ⊆  𝐵  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  d 𝑥 ) | 
						
							| 84 | 1 83 | syl | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  d 𝑥 ) | 
						
							| 85 | 80 | simprd | ⊢ ( 𝜑  →  ∫ 𝐵 if ( 𝑥  ∈  𝐴 ,  𝐶 ,  0 )  d 𝑥  =  ∫ 𝐵 𝐶  d 𝑥 ) | 
						
							| 86 | 84 85 | eqtrd | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 𝐶  d 𝑥 ) | 
						
							| 87 | 82 86 | jca | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  ↔  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1 )  ∧  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 𝐶  d 𝑥 ) ) |