Step |
Hyp |
Ref |
Expression |
1 |
|
itgss3.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
itgss3.2 |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
3 |
|
itgss3.3 |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) = 0 ) |
4 |
|
itgss3.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
9 |
6 7 8
|
nfif |
⊢ Ⅎ 𝑥 if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) |
10 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
11 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
12 |
10 11
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
13 |
5 9 12
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → 𝐴 ⊆ 𝐵 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
16 |
15 7 11
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
17 |
|
iftrue |
⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
18 |
17
|
mpteq2ia |
⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
19 |
16 18
|
eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
21 |
19 20
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
22 |
|
iblmbf |
⊢ ( ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) |
23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) |
24 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
25 |
24 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
26 |
25
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
28 |
19
|
feq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ↔ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐴 ⟶ ℂ ) |
29 |
27 28
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐴 ⟶ ℂ ) |
30 |
29
|
fvmptelrn |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ∈ ℂ ) |
31 |
23 30
|
mbfdm2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → 𝐴 ∈ dom vol ) |
32 |
|
undif |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
33 |
1 32
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom vol ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
35 |
|
id |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ∈ dom vol ) |
36 |
2
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ⊆ ℝ ) |
37 |
|
nulmbl |
⊢ ( ( ( 𝐵 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) = 0 ) → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) |
38 |
36 3 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) |
39 |
|
unmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) |
40 |
35 38 39
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom vol ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) |
41 |
34 40
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom vol ) → 𝐵 ∈ dom vol ) |
42 |
31 41
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → 𝐵 ∈ dom vol ) |
43 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝐴 ) ) → ¬ 𝑦 ∈ 𝐴 ) |
45 |
44
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) = 0 ) |
46 |
14 42 30 45 21
|
iblss2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
47 |
13 46
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
48 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
49 |
48
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
50 |
5 9 12
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
51 |
49 50
|
eqtr3i |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) |
52 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → 𝐴 ⊆ 𝐵 ) |
53 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
54 |
13 53
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
55 |
|
iblmbf |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) |
56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ MblFn ) |
57 |
|
0cn |
⊢ 0 ∈ ℂ |
58 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
59 |
4 57 58
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
60 |
59
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
61 |
13
|
feq1i |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ↔ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
62 |
60 61
|
sylib |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) : 𝐵 ⟶ ℂ ) |
64 |
63
|
fvmptelrn |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ∈ ℂ ) |
65 |
56 64
|
mbfdm2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → 𝐵 ∈ dom vol ) |
66 |
|
dfss4 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) |
67 |
1 66
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ dom vol ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) |
69 |
|
id |
⊢ ( 𝐵 ∈ dom vol → 𝐵 ∈ dom vol ) |
70 |
|
difmbl |
⊢ ( ( 𝐵 ∈ dom vol ∧ ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) |
71 |
69 38 70
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ dom vol ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ∈ dom vol ) |
72 |
68 71
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ dom vol ) → 𝐴 ∈ dom vol ) |
73 |
65 72
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → 𝐴 ∈ dom vol ) |
74 |
52 73 64 54
|
iblss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 , 0 ) ) ∈ 𝐿1 ) |
75 |
51 74
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
76 |
47 75
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) ) |
77 |
67
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐴 ) ) |
78 |
77
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ) → 𝑥 ∈ 𝐴 ) |
79 |
78 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
80 |
59 4 36 3 79
|
itgeqa |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) ) |
81 |
80
|
simpld |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ) |
82 |
76 81
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ) |
83 |
|
itgss2 |
⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
84 |
1 83
|
syl |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
85 |
80
|
simprd |
⊢ ( 𝜑 → ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |
86 |
84 85
|
eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) |
87 |
82 86
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) ∧ ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐶 d 𝑥 ) ) |