| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgadd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | itgadd.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | itgadd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 4 |  | itgadd.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 5 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 10 | 9 3 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 11 | 10 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐶  ∈  ℂ ) | 
						
							| 12 | 3 4 | iblneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐶 )  ∈  𝐿1 ) | 
						
							| 13 | 7 2 11 12 | itgadd | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  +  - 𝐶 )  d 𝑥  =  ( ∫ 𝐴 𝐵  d 𝑥  +  ∫ 𝐴 - 𝐶  d 𝑥 ) ) | 
						
							| 14 | 3 4 | itgneg | ⊢ ( 𝜑  →  - ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐴 - 𝐶  d 𝑥 ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝜑  →  ( ∫ 𝐴 𝐵  d 𝑥  +  - ∫ 𝐴 𝐶  d 𝑥 )  =  ( ∫ 𝐴 𝐵  d 𝑥  +  ∫ 𝐴 - 𝐶  d 𝑥 ) ) | 
						
							| 16 | 13 15 | eqtr4d | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  +  - 𝐶 )  d 𝑥  =  ( ∫ 𝐴 𝐵  d 𝑥  +  - ∫ 𝐴 𝐶  d 𝑥 ) ) | 
						
							| 17 | 7 10 | negsubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +  - 𝐶 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 18 | 17 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  +  - 𝐶 )  d 𝑥  =  ∫ 𝐴 ( 𝐵  −  𝐶 )  d 𝑥 ) | 
						
							| 19 | 1 2 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  ∈  ℂ ) | 
						
							| 20 | 3 4 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  ∈  ℂ ) | 
						
							| 21 | 19 20 | negsubd | ⊢ ( 𝜑  →  ( ∫ 𝐴 𝐵  d 𝑥  +  - ∫ 𝐴 𝐶  d 𝑥 )  =  ( ∫ 𝐴 𝐵  d 𝑥  −  ∫ 𝐴 𝐶  d 𝑥 ) ) | 
						
							| 22 | 16 18 21 | 3eqtr3d | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐵  −  𝐶 )  d 𝑥  =  ( ∫ 𝐴 𝐵  d 𝑥  −  ∫ 𝐴 𝐶  d 𝑥 ) ) |