| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgsubst.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 2 |  | itgsubst.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 3 |  | itgsubst.le | ⊢ ( 𝜑  →  𝑋  ≤  𝑌 ) | 
						
							| 4 |  | itgsubst.z | ⊢ ( 𝜑  →  𝑍  ∈  ℝ* ) | 
						
							| 5 |  | itgsubst.w | ⊢ ( 𝜑  →  𝑊  ∈  ℝ* ) | 
						
							| 6 |  | itgsubst.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | 
						
							| 7 |  | itgsubst.b | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  ∩  𝐿1 ) ) | 
						
							| 8 |  | itgsubst.c | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∈  ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | 
						
							| 9 |  | itgsubst.da | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) ) | 
						
							| 10 |  | itgsubst.e | ⊢ ( 𝑢  =  𝐴  →  𝐶  =  𝐸 ) | 
						
							| 11 |  | itgsubst.k | ⊢ ( 𝑥  =  𝑋  →  𝐴  =  𝐾 ) | 
						
							| 12 |  | itgsubst.l | ⊢ ( 𝑥  =  𝑌  →  𝐴  =  𝐿 ) | 
						
							| 13 |  | ioossre | ⊢ ( 𝑍 (,) 𝑊 )  ⊆  ℝ | 
						
							| 14 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 15 |  | cncfss | ⊢ ( ( ( 𝑍 (,) 𝑊 )  ⊆  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) )  ⊆  ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) )  ⊆  ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) | 
						
							| 17 | 16 6 | sselid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) ) | 
						
							| 18 | 1 2 3 17 | evthicc | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 𝑋 [,] 𝑌 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ∃ 𝑦  ∈  ( 𝑋 [,] 𝑌 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 19 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 20 | 13 19 | sstri | ⊢ ( 𝑍 (,) 𝑊 )  ⊆  ℝ* | 
						
							| 21 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 22 | 6 21 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 24 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  𝑦  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 25 | 23 24 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 26 | 20 25 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 27 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  𝑊  ∈  ℝ* ) | 
						
							| 28 |  | eliooord | ⊢ ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ( 𝑍 (,) 𝑊 )  →  ( 𝑍  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑊 ) ) | 
						
							| 29 | 25 28 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  ( 𝑍  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑊 ) ) | 
						
							| 30 | 29 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑊 ) | 
						
							| 31 |  | qbtwnxr | ⊢ ( ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ*  ∧  𝑊  ∈  ℝ*  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑊 )  →  ∃ 𝑛  ∈  ℚ ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) | 
						
							| 32 | 26 27 30 31 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  ∃ 𝑛  ∈  ℚ ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) | 
						
							| 33 |  | qre | ⊢ ( 𝑛  ∈  ℚ  →  𝑛  ∈  ℝ ) | 
						
							| 34 | 33 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 35 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑍  ∈  ℝ* ) | 
						
							| 36 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 37 | 34 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑛  ∈  ℝ* ) | 
						
							| 38 | 29 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  𝑍  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑍  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 40 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛 ) | 
						
							| 41 | 35 36 37 39 40 | xrlttrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑍  <  𝑛 ) | 
						
							| 42 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑛  <  𝑊 ) | 
						
							| 43 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑊  ∈  ℝ* ) | 
						
							| 44 |  | elioo2 | ⊢ ( ( 𝑍  ∈  ℝ*  ∧  𝑊  ∈  ℝ* )  →  ( 𝑛  ∈  ( 𝑍 (,) 𝑊 )  ↔  ( 𝑛  ∈  ℝ  ∧  𝑍  <  𝑛  ∧  𝑛  <  𝑊 ) ) ) | 
						
							| 45 | 35 43 44 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( 𝑛  ∈  ( 𝑍 (,) 𝑊 )  ↔  ( 𝑛  ∈  ℝ  ∧  𝑍  <  𝑛  ∧  𝑛  <  𝑊 ) ) ) | 
						
							| 46 | 34 41 42 45 | mpbir3and | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 47 |  | anass | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) )  ↔  ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) ) | 
						
							| 48 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛 ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛 ) | 
						
							| 50 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 51 | 50 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 52 | 20 51 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ* ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑦  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 54 | 50 53 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 55 | 20 54 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 57 | 33 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 59 | 58 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑛  ∈  ℝ* ) | 
						
							| 60 |  | xrlelttr | ⊢ ( ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ*  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ*  ∧  𝑛  ∈  ℝ* )  →  ( ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 61 | 52 56 59 60 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 62 | 49 61 | mpan2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 63 | 62 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) | 
						
							| 65 | 64 | an32s | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) | 
						
							| 66 | 47 65 | sylanbr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  ∧  ( 𝑛  ∈  ℚ  ∧  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑛  ∧  𝑛  <  𝑊 ) ) )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) | 
						
							| 67 | 32 46 66 | reximssdv | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) )  →  ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) | 
						
							| 68 | 67 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 𝑋 [,] 𝑌 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  →  ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 69 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  𝑍  ∈  ℝ* ) | 
						
							| 70 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 71 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  𝑦  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 72 | 70 71 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 73 | 20 72 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 74 | 72 28 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  ( 𝑍  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑊 ) ) | 
						
							| 75 | 74 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  𝑍  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 76 |  | qbtwnxr | ⊢ ( ( 𝑍  ∈  ℝ*  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ*  ∧  𝑍  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) )  →  ∃ 𝑚  ∈  ℚ ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) | 
						
							| 77 | 69 73 75 76 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  ∃ 𝑚  ∈  ℚ ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) | 
						
							| 78 |  | qre | ⊢ ( 𝑚  ∈  ℚ  →  𝑚  ∈  ℝ ) | 
						
							| 79 | 78 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 80 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑍  <  𝑚 ) | 
						
							| 81 | 79 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑚  ∈  ℝ* ) | 
						
							| 82 | 73 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 83 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑊  ∈  ℝ* ) | 
						
							| 84 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 85 | 74 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑊 ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  <  𝑊 ) | 
						
							| 87 | 81 82 83 84 86 | xrlttrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑚  <  𝑊 ) | 
						
							| 88 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑍  ∈  ℝ* ) | 
						
							| 89 |  | elioo2 | ⊢ ( ( 𝑍  ∈  ℝ*  ∧  𝑊  ∈  ℝ* )  →  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ↔  ( 𝑚  ∈  ℝ  ∧  𝑍  <  𝑚  ∧  𝑚  <  𝑊 ) ) ) | 
						
							| 90 | 88 83 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ↔  ( 𝑚  ∈  ℝ  ∧  𝑍  <  𝑚  ∧  𝑚  <  𝑊 ) ) ) | 
						
							| 91 | 79 80 87 90 | mpbir3and | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑚  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 92 |  | anass | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  ↔  ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) ) ) | 
						
							| 93 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 95 | 78 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 97 | 96 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑚  ∈  ℝ* ) | 
						
							| 98 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 99 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑦  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 100 | 98 99 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 101 | 20 100 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 103 | 98 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 104 | 20 103 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ* ) | 
						
							| 105 |  | xrltletr | ⊢ ( ( 𝑚  ∈  ℝ*  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∈  ℝ*  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ* )  →  ( ( 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  →  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 106 | 97 102 104 105 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  →  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 107 | 94 106 | mpand | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  →  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 108 | 107 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 109 | 108 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) | 
						
							| 110 | 109 | an32s | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) | 
						
							| 111 | 92 110 | sylanbr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  ∧  ( 𝑚  ∈  ℚ  ∧  ( 𝑍  <  𝑚  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 ) ) ) )  →  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) | 
						
							| 112 | 77 91 111 | reximssdv | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) )  →  ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) | 
						
							| 113 | 112 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 𝑋 [,] 𝑌 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  →  ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) ) ) | 
						
							| 114 |  | ancom | ⊢ ( ( ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛  ∧  ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  ↔  ( ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 115 |  | reeanv | ⊢ ( ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  ↔  ( ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 116 | 114 115 | bitr4i | ⊢ ( ( ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛  ∧  ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  ↔  ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 117 |  | r19.26 | ⊢ ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  ↔  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) | 
						
							| 118 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 119 | 118 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 120 | 13 119 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 121 | 120 | 3biant1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  ↔  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) ) | 
						
							| 122 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑚  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 123 | 20 122 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑚  ∈  ℝ* ) | 
						
							| 124 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 125 | 20 124 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑛  ∈  ℝ* ) | 
						
							| 126 |  | elioo2 | ⊢ ( ( 𝑚  ∈  ℝ*  ∧  𝑛  ∈  ℝ* )  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) ) | 
						
							| 127 | 123 125 126 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ℝ  ∧  𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 ) ) ) | 
						
							| 128 | 121 127 | bitr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  ∧  𝑧  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  ↔  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 129 | 128 | ralbidva | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  ↔  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 130 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) | 
						
							| 131 | 130 | nfel1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 ) | 
						
							| 132 |  | nfv | ⊢ Ⅎ 𝑧 ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝑚 (,) 𝑛 ) | 
						
							| 133 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  =  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 ) ) | 
						
							| 134 | 133 | eleq1d | ⊢ ( 𝑧  =  𝑥  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 135 | 131 132 134 | cbvralw | ⊢ ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝑚 (,) 𝑛 ) ) | 
						
							| 136 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑥  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 137 | 22 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐴  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 138 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  =  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) | 
						
							| 139 | 138 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ∧  𝐴  ∈  ( 𝑍 (,) 𝑊 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 140 | 136 137 139 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 141 | 140 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 142 | 141 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 143 | 135 142 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 )  ↔  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 145 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 146 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  𝑌  ∈  ℝ ) | 
						
							| 147 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  𝑋  ≤  𝑌 ) | 
						
							| 148 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  𝑍  ∈  ℝ* ) | 
						
							| 149 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  𝑊  ∈  ℝ* ) | 
						
							| 150 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 151 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴 | 
						
							| 152 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 153 | 150 151 152 | cbvmpt | ⊢ ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  =  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 154 | 153 6 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | 
						
							| 156 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 157 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 158 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 159 | 156 157 158 | cbvmpt | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  =  ( 𝑦  ∈  ( 𝑋 (,) 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 160 | 159 7 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑋 (,) 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  ∩  𝐿1 ) ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ( 𝑦  ∈  ( 𝑋 (,) 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  ∈  ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  ∩  𝐿1 ) ) | 
						
							| 162 |  | nfcv | ⊢ Ⅎ 𝑣 𝐶 | 
						
							| 163 |  | nfcsb1v | ⊢ Ⅎ 𝑢 ⦋ 𝑣  /  𝑢 ⦌ 𝐶 | 
						
							| 164 |  | csbeq1a | ⊢ ( 𝑢  =  𝑣  →  𝐶  =  ⦋ 𝑣  /  𝑢 ⦌ 𝐶 ) | 
						
							| 165 | 162 163 164 | cbvmpt | ⊢ ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  =  ( 𝑣  ∈  ( 𝑍 (,) 𝑊 )  ↦  ⦋ 𝑣  /  𝑢 ⦌ 𝐶 ) | 
						
							| 166 | 165 8 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝑍 (,) 𝑊 )  ↦  ⦋ 𝑣  /  𝑢 ⦌ 𝐶 )  ∈  ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ( 𝑣  ∈  ( 𝑍 (,) 𝑊 )  ↦  ⦋ 𝑣  /  𝑢 ⦌ 𝐶 )  ∈  ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | 
						
							| 168 | 153 | oveq2i | ⊢ ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( ℝ  D  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 169 | 9 168 159 | 3eqtr3g | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( 𝑦  ∈  ( 𝑋 (,) 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 170 | 169 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ( ℝ  D  ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) )  =  ( 𝑦  ∈  ( 𝑋 (,) 𝑌 )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 171 |  | csbeq1 | ⊢ ( 𝑣  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑣  /  𝑢 ⦌ 𝐶  =  ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶 ) | 
						
							| 172 |  | csbeq1 | ⊢ ( 𝑦  =  𝑋  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑋  /  𝑥 ⦌ 𝐴 ) | 
						
							| 173 |  | csbeq1 | ⊢ ( 𝑦  =  𝑌  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ) | 
						
							| 174 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  𝑚  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 175 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 176 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) | 
						
							| 177 | 151 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ( 𝑚 (,) 𝑛 ) | 
						
							| 178 | 152 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  ( 𝑚 (,) 𝑛 )  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 179 | 177 178 | rspc | ⊢ ( 𝑦  ∈  ( 𝑋 [,] 𝑌 )  →  ( ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) ) | 
						
							| 180 | 176 179 | mpan9 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  ∧  𝑦  ∈  ( 𝑋 [,] 𝑌 ) )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) | 
						
							| 181 | 145 146 147 148 149 155 161 167 170 171 172 173 174 175 180 | itgsubstlem | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] ⦋ 𝑣  /  𝑢 ⦌ 𝐶  d 𝑣  =  ⨜ [ 𝑋  →  𝑌 ] ( ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  d 𝑦 ) | 
						
							| 182 | 164 162 163 | cbvditg | ⊢ ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢  =  ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] ⦋ 𝑣  /  𝑢 ⦌ 𝐶  d 𝑣 | 
						
							| 183 |  | nfcvd | ⊢ ( 𝑋  ∈  ℝ  →  Ⅎ 𝑥 𝐾 ) | 
						
							| 184 | 183 11 | csbiegf | ⊢ ( 𝑋  ∈  ℝ  →  ⦋ 𝑋  /  𝑥 ⦌ 𝐴  =  𝐾 ) | 
						
							| 185 |  | ditgeq1 | ⊢ ( ⦋ 𝑋  /  𝑥 ⦌ 𝐴  =  𝐾  →  ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝐾  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢 ) | 
						
							| 186 | 1 184 185 | 3syl | ⊢ ( 𝜑  →  ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝐾  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢 ) | 
						
							| 187 |  | nfcvd | ⊢ ( 𝑌  ∈  ℝ  →  Ⅎ 𝑥 𝐿 ) | 
						
							| 188 | 187 12 | csbiegf | ⊢ ( 𝑌  ∈  ℝ  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴  =  𝐿 ) | 
						
							| 189 |  | ditgeq2 | ⊢ ( ⦋ 𝑌  /  𝑥 ⦌ 𝐴  =  𝐿  →  ⨜ [ 𝐾  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 190 | 2 188 189 | 3syl | ⊢ ( 𝜑  →  ⨜ [ 𝐾  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 191 | 186 190 | eqtrd | ⊢ ( 𝜑  →  ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 192 | 182 191 | eqtr3id | ⊢ ( 𝜑  →  ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] ⦋ 𝑣  /  𝑢 ⦌ 𝐶  d 𝑣  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 193 | 192 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ⨜ [ ⦋ 𝑋  /  𝑥 ⦌ 𝐴  →  ⦋ 𝑌  /  𝑥 ⦌ 𝐴 ] ⦋ 𝑣  /  𝑢 ⦌ 𝐶  d 𝑣  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 194 | 152 | csbeq1d | ⊢ ( 𝑥  =  𝑦  →  ⦋ 𝐴  /  𝑢 ⦌ 𝐶  =  ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶 ) | 
						
							| 195 | 194 158 | oveq12d | ⊢ ( 𝑥  =  𝑦  →  ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  =  ( ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 196 |  | nfcv | ⊢ Ⅎ 𝑦 ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 ) | 
						
							| 197 |  | nfcv | ⊢ Ⅎ 𝑥 𝐶 | 
						
							| 198 | 151 197 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶 | 
						
							| 199 |  | nfcv | ⊢ Ⅎ 𝑥  · | 
						
							| 200 | 198 199 157 | nfov | ⊢ Ⅎ 𝑥 ( ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 201 | 195 196 200 | cbvditg | ⊢ ⨜ [ 𝑋  →  𝑌 ] ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  d 𝑥  =  ⨜ [ 𝑋  →  𝑌 ] ( ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  d 𝑦 | 
						
							| 202 |  | ioossicc | ⊢ ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 ) | 
						
							| 203 | 202 | sseli | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  →  𝑥  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 204 | 203 137 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐴  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 205 |  | nfcvd | ⊢ ( 𝐴  ∈  ( 𝑍 (,) 𝑊 )  →  Ⅎ 𝑢 𝐸 ) | 
						
							| 206 | 205 10 | csbiegf | ⊢ ( 𝐴  ∈  ( 𝑍 (,) 𝑊 )  →  ⦋ 𝐴  /  𝑢 ⦌ 𝐶  =  𝐸 ) | 
						
							| 207 | 204 206 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ⦋ 𝐴  /  𝑢 ⦌ 𝐶  =  𝐸 ) | 
						
							| 208 | 207 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  =  ( 𝐸  ·  𝐵 ) ) | 
						
							| 209 | 208 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  d 𝑥  =  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 210 | 3 | ditgpos | ⊢ ( 𝜑  →  ⨜ [ 𝑋  →  𝑌 ] ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  d 𝑥  =  ∫ ( 𝑋 (,) 𝑌 ) ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  d 𝑥 ) | 
						
							| 211 | 3 | ditgpos | ⊢ ( 𝜑  →  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥  =  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 212 | 209 210 211 | 3eqtr4d | ⊢ ( 𝜑  →  ⨜ [ 𝑋  →  𝑌 ] ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  d 𝑥  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 213 | 201 212 | eqtr3id | ⊢ ( 𝜑  →  ⨜ [ 𝑋  →  𝑌 ] ( ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  d 𝑦  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 214 | 213 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ⨜ [ 𝑋  →  𝑌 ] ( ⦋ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  /  𝑢 ⦌ 𝐶  ·  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 )  d 𝑦  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 215 | 181 193 214 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) )  ∧  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 ) ) )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 216 | 215 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  →  ( ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑚 (,) 𝑛 )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 217 | 144 216 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∈  ( 𝑚 (,) 𝑛 )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 218 | 129 217 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 219 | 117 218 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑍 (,) 𝑊 )  ∧  𝑛  ∈  ( 𝑍 (,) 𝑊 ) ) )  →  ( ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 220 | 219 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ∧  ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛 )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 221 | 116 220 | biimtrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑛  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  <  𝑛  ∧  ∃ 𝑚  ∈  ( 𝑍 (,) 𝑊 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) 𝑚  <  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 222 | 68 113 221 | syl2and | ⊢ ( 𝜑  →  ( ( ∃ 𝑦  ∈  ( 𝑋 [,] 𝑌 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ∧  ∃ 𝑦  ∈  ( 𝑋 [,] 𝑌 ) ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑦 )  ≤  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ‘ 𝑧 ) )  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 223 | 18 222 | mpd | ⊢ ( 𝜑  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) |