Step |
Hyp |
Ref |
Expression |
1 |
|
itgsubsticc.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
itgsubsticc.2 |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
itgsubsticc.3 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
4 |
|
itgsubsticc.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ) |
5 |
|
itgsubsticc.5 |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) ) |
6 |
|
itgsubsticc.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
7 |
|
itgsubsticc.7 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
8 |
|
itgsubsticc.8 |
⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) |
9 |
|
itgsubsticc.9 |
⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) |
10 |
|
itgsubsticc.10 |
⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) |
11 |
|
itgsubsticc.11 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
12 |
|
itgsubsticc.12 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
13 |
|
eqid |
⊢ ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) |
14 |
|
eqid |
⊢ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐾 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐿 ) ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐾 ) , ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ‘ 𝐿 ) ) ) ) |
15 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) |
16 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝐴 = 𝐿 ) |
17 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
18 |
2
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
19 |
|
ubicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
20 |
17 18 3 19
|
syl3anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
21 |
15 16 20 12
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑌 ) = 𝐿 ) |
22 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
24 |
23 20
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑌 ) ∈ ( 𝐾 [,] 𝐿 ) ) |
25 |
21 24
|
eqeltrrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐾 [,] 𝐿 ) ) |
26 |
|
elicc2 |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝐿 ∈ ( 𝐾 [,] 𝐿 ) ↔ ( 𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿 ) ) ) |
27 |
11 12 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ∈ ( 𝐾 [,] 𝐿 ) ↔ ( 𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿 ) ) ) |
28 |
25 27
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿 ) ) |
29 |
28
|
simp2d |
⊢ ( 𝜑 → 𝐾 ≤ 𝐿 ) |
30 |
13 14 1 2 3 4 6 5 11 12 29 7 8 9 10
|
itgsubsticclem |
⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |