| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgsubst.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 2 |  | itgsubst.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 3 |  | itgsubst.le | ⊢ ( 𝜑  →  𝑋  ≤  𝑌 ) | 
						
							| 4 |  | itgsubst.z | ⊢ ( 𝜑  →  𝑍  ∈  ℝ* ) | 
						
							| 5 |  | itgsubst.w | ⊢ ( 𝜑  →  𝑊  ∈  ℝ* ) | 
						
							| 6 |  | itgsubst.a | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) | 
						
							| 7 |  | itgsubst.b | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  ∩  𝐿1 ) ) | 
						
							| 8 |  | itgsubst.c | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∈  ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) | 
						
							| 9 |  | itgsubst.da | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) ) | 
						
							| 10 |  | itgsubst.e | ⊢ ( 𝑢  =  𝐴  →  𝐶  =  𝐸 ) | 
						
							| 11 |  | itgsubst.k | ⊢ ( 𝑥  =  𝑋  →  𝐴  =  𝐾 ) | 
						
							| 12 |  | itgsubst.l | ⊢ ( 𝑥  =  𝑌  →  𝐴  =  𝐿 ) | 
						
							| 13 |  | itgsubst.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 14 |  | itgsubst.n | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 15 |  | itgsubst.cl2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐴  ∈  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 16 | 3 | ditgpos | ⊢ ( 𝜑  →  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥  =  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 17 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 19 |  | iccssre | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝑋 [,] 𝑌 )  ⊆  ℝ ) | 
						
							| 20 | 1 2 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 [,] 𝑌 )  ⊆  ℝ ) | 
						
							| 21 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  =  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ) | 
						
							| 22 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 )  =  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑣  =  𝐴  →  ( 𝑀 (,) 𝑣 )  =  ( 𝑀 (,) 𝐴 ) ) | 
						
							| 24 |  | itgeq1 | ⊢ ( ( 𝑀 (,) 𝑣 )  =  ( 𝑀 (,) 𝐴 )  →  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢  =  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝑣  =  𝐴  →  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢  =  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) | 
						
							| 26 | 15 21 22 25 | fmptco | ⊢ ( 𝜑  →  ( ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 )  ∘  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) | 
						
							| 27 | 15 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) | 
						
							| 28 |  | ioossicc | ⊢ ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 ) | 
						
							| 29 |  | eliooord | ⊢ ( 𝑀  ∈  ( 𝑍 (,) 𝑊 )  →  ( 𝑍  <  𝑀  ∧  𝑀  <  𝑊 ) ) | 
						
							| 30 | 13 29 | syl | ⊢ ( 𝜑  →  ( 𝑍  <  𝑀  ∧  𝑀  <  𝑊 ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( 𝜑  →  𝑍  <  𝑀 ) | 
						
							| 32 |  | eliooord | ⊢ ( 𝑁  ∈  ( 𝑍 (,) 𝑊 )  →  ( 𝑍  <  𝑁  ∧  𝑁  <  𝑊 ) ) | 
						
							| 33 | 14 32 | syl | ⊢ ( 𝜑  →  ( 𝑍  <  𝑁  ∧  𝑁  <  𝑊 ) ) | 
						
							| 34 | 33 | simprd | ⊢ ( 𝜑  →  𝑁  <  𝑊 ) | 
						
							| 35 |  | iccssioo | ⊢ ( ( ( 𝑍  ∈  ℝ*  ∧  𝑊  ∈  ℝ* )  ∧  ( 𝑍  <  𝑀  ∧  𝑁  <  𝑊 ) )  →  ( 𝑀 [,] 𝑁 )  ⊆  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 36 | 4 5 31 34 35 | syl22anc | ⊢ ( 𝜑  →  ( 𝑀 [,] 𝑁 )  ⊆  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 37 | 28 36 | sstrid | ⊢ ( 𝜑  →  ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 38 |  | ioossre | ⊢ ( 𝑍 (,) 𝑊 )  ⊆  ℝ | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ( 𝑍 (,) 𝑊 )  ⊆  ℝ ) | 
						
							| 40 | 39 17 | sstrdi | ⊢ ( 𝜑  →  ( 𝑍 (,) 𝑊 )  ⊆  ℂ ) | 
						
							| 41 | 37 40 | sstrd | ⊢ ( 𝜑  →  ( 𝑀 (,) 𝑁 )  ⊆  ℂ ) | 
						
							| 42 |  | cncfcdm | ⊢ ( ( ( 𝑀 (,) 𝑁 )  ⊆  ℂ  ∧  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) )  ↔  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) ) | 
						
							| 43 | 41 6 42 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) )  ↔  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) ) | 
						
							| 44 | 27 43 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) ) ) | 
						
							| 45 | 28 | sseli | ⊢ ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  →  𝑣  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 46 | 38 14 | sselid | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 47 | 46 | rexrd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ* ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝑁  ∈  ℝ* ) | 
						
							| 49 | 38 13 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 50 |  | elicc2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝑣  ∈  ℝ  ∧  𝑀  ≤  𝑣  ∧  𝑣  ≤  𝑁 ) ) ) | 
						
							| 51 | 49 46 50 | syl2anc | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝑣  ∈  ℝ  ∧  𝑀  ≤  𝑣  ∧  𝑣  ≤  𝑁 ) ) ) | 
						
							| 52 | 51 | biimpa | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑣  ∈  ℝ  ∧  𝑀  ≤  𝑣  ∧  𝑣  ≤  𝑁 ) ) | 
						
							| 53 | 52 | simp3d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝑣  ≤  𝑁 ) | 
						
							| 54 |  | iooss2 | ⊢ ( ( 𝑁  ∈  ℝ*  ∧  𝑣  ≤  𝑁 )  →  ( 𝑀 (,) 𝑣 )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 55 | 48 53 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑀 (,) 𝑣 )  ⊆  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 56 | 55 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  𝑢  ∈  ( 𝑀 (,) 𝑣 ) )  →  𝑢  ∈  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 57 | 37 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝑢  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 58 |  | cncff | ⊢ ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∈  ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ )  →  ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ) | 
						
							| 59 | 8 58 | syl | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ) | 
						
							| 60 | 59 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑍 (,) 𝑊 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 61 | 57 60 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  𝑢  ∈  ( 𝑀 (,) 𝑁 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 63 | 56 62 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  𝑢  ∈  ( 𝑀 (,) 𝑣 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 64 |  | ioombl | ⊢ ( 𝑀 (,) 𝑣 )  ∈  dom  vol | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑀 (,) 𝑣 )  ∈  dom  vol ) | 
						
							| 66 | 28 | a1i | ⊢ ( 𝜑  →  ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 67 |  | ioombl | ⊢ ( 𝑀 (,) 𝑁 )  ∈  dom  vol | 
						
							| 68 | 67 | a1i | ⊢ ( 𝜑  →  ( 𝑀 (,) 𝑁 )  ∈  dom  vol ) | 
						
							| 69 | 36 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝑢  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 70 | 69 60 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑀 [,] 𝑁 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 71 | 36 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ↾  ( 𝑀 [,] 𝑁 ) )  =  ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 ) ) | 
						
							| 72 |  | rescncf | ⊢ ( ( 𝑀 [,] 𝑁 )  ⊆  ( 𝑍 (,) 𝑊 )  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∈  ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ )  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) ) | 
						
							| 73 | 36 8 72 | sylc | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ↾  ( 𝑀 [,] 𝑁 ) )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) | 
						
							| 74 | 71 73 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) | 
						
							| 75 |  | cniccibl | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) )  →  ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 76 | 49 46 74 75 | syl3anc | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 77 | 66 68 70 76 | iblss | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 79 | 55 65 62 78 | iblss | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ( 𝑢  ∈  ( 𝑀 (,) 𝑣 )  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 80 | 63 79 | itgcl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢  ∈  ℂ ) | 
						
							| 81 | 45 80 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 (,) 𝑁 ) )  →  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢  ∈  ℂ ) | 
						
							| 82 | 81 | fmpttd | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) | 
						
							| 83 | 37 38 | sstrdi | ⊢ ( 𝜑  →  ( 𝑀 (,) 𝑁 )  ⊆  ℝ ) | 
						
							| 84 |  | fveq2 | ⊢ ( 𝑡  =  𝑢  →  ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  =  ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑢 ) ) | 
						
							| 85 |  | nffvmpt1 | ⊢ Ⅎ 𝑢 ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 ) | 
						
							| 86 |  | nfcv | ⊢ Ⅎ 𝑡 ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑢 ) | 
						
							| 87 | 84 85 86 | cbvitg | ⊢ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑢 )  d 𝑢 | 
						
							| 88 |  | eqid | ⊢ ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 )  =  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) | 
						
							| 89 | 88 | fvmpt2 | ⊢ ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ∧  𝐶  ∈  ℂ )  →  ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑢 )  =  𝐶 ) | 
						
							| 90 | 56 63 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  ∧  𝑢  ∈  ( 𝑀 (,) 𝑣 ) )  →  ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑢 )  =  𝐶 ) | 
						
							| 91 | 90 | itgeq2dv | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑢 )  d 𝑢  =  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) | 
						
							| 92 | 87 91 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 [,] 𝑁 ) )  →  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) | 
						
							| 93 | 92 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  d 𝑡 )  =  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  d 𝑡 ) )  =  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) ) ) | 
						
							| 95 |  | eqid | ⊢ ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  d 𝑡 )  =  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 96 | 1 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 97 | 2 | rexrd | ⊢ ( 𝜑  →  𝑌  ∈  ℝ* ) | 
						
							| 98 |  | lbicc2 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑌  ∈  ℝ*  ∧  𝑋  ≤  𝑌 )  →  𝑋  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 99 | 96 97 3 98 | syl3anc | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 100 |  | n0i | ⊢ ( 𝑋  ∈  ( 𝑋 [,] 𝑌 )  →  ¬  ( 𝑋 [,] 𝑌 )  =  ∅ ) | 
						
							| 101 | 99 100 | syl | ⊢ ( 𝜑  →  ¬  ( 𝑋 [,] 𝑌 )  =  ∅ ) | 
						
							| 102 |  | feq3 | ⊢ ( ( 𝑀 (,) 𝑁 )  =  ∅  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 )  ↔  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ) ) | 
						
							| 103 | 27 102 | syl5ibcom | ⊢ ( 𝜑  →  ( ( 𝑀 (,) 𝑁 )  =  ∅  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ) ) | 
						
							| 104 |  | f00 | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅  ↔  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  =  ∅  ∧  ( 𝑋 [,] 𝑌 )  =  ∅ ) ) | 
						
							| 105 | 104 | simprbi | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅  →  ( 𝑋 [,] 𝑌 )  =  ∅ ) | 
						
							| 106 | 103 105 | syl6 | ⊢ ( 𝜑  →  ( ( 𝑀 (,) 𝑁 )  =  ∅  →  ( 𝑋 [,] 𝑌 )  =  ∅ ) ) | 
						
							| 107 | 101 106 | mtod | ⊢ ( 𝜑  →  ¬  ( 𝑀 (,) 𝑁 )  =  ∅ ) | 
						
							| 108 | 49 | rexrd | ⊢ ( 𝜑  →  𝑀  ∈  ℝ* ) | 
						
							| 109 |  | ioo0 | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝑁  ∈  ℝ* )  →  ( ( 𝑀 (,) 𝑁 )  =  ∅  ↔  𝑁  ≤  𝑀 ) ) | 
						
							| 110 | 108 47 109 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑀 (,) 𝑁 )  =  ∅  ↔  𝑁  ≤  𝑀 ) ) | 
						
							| 111 | 107 110 | mtbid | ⊢ ( 𝜑  →  ¬  𝑁  ≤  𝑀 ) | 
						
							| 112 | 46 49 | letrid | ⊢ ( 𝜑  →  ( 𝑁  ≤  𝑀  ∨  𝑀  ≤  𝑁 ) ) | 
						
							| 113 | 112 | ord | ⊢ ( 𝜑  →  ( ¬  𝑁  ≤  𝑀  →  𝑀  ≤  𝑁 ) ) | 
						
							| 114 | 111 113 | mpd | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 115 |  | resmpt | ⊢ ( ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 )  →  ( ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ↾  ( 𝑀 (,) 𝑁 ) )  =  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ) | 
						
							| 116 | 28 115 | ax-mp | ⊢ ( ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ↾  ( 𝑀 (,) 𝑁 ) )  =  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) | 
						
							| 117 |  | rescncf | ⊢ ( ( 𝑀 (,) 𝑁 )  ⊆  ( 𝑀 [,] 𝑁 )  →  ( ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ∈  ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ )  →  ( ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ↾  ( 𝑀 (,) 𝑁 ) )  ∈  ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) ) | 
						
							| 118 | 28 74 117 | mpsyl | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝑀 [,] 𝑁 )  ↦  𝐶 )  ↾  ( 𝑀 (,) 𝑁 ) )  ∈  ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) | 
						
							| 119 | 116 118 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 )  ∈  ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) | 
						
							| 120 | 95 49 46 114 119 77 | ftc1cn | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ‘ 𝑡 )  d 𝑡 ) )  =  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ) | 
						
							| 121 | 36 38 | sstrdi | ⊢ ( 𝜑  →  ( 𝑀 [,] 𝑁 )  ⊆  ℝ ) | 
						
							| 122 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 123 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 124 |  | iccntr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 125 | 49 46 124 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 126 | 18 121 80 122 123 125 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 [,] 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) )  =  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) ) ) | 
						
							| 127 | 94 120 126 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) )  =  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ) | 
						
							| 128 | 127 | dmeqd | ⊢ ( 𝜑  →  dom  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) )  =  dom  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) ) | 
						
							| 129 | 88 61 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 130 | 128 129 | eqtrd | ⊢ ( 𝜑  →  dom  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) )  =  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 131 |  | dvcn | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ  ∧  ( 𝑀 (,) 𝑁 )  ⊆  ℝ )  ∧  dom  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) )  =  ( 𝑀 (,) 𝑁 ) )  →  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 )  ∈  ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) | 
						
							| 132 | 18 82 83 130 131 | syl31anc | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 )  ∈  ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) | 
						
							| 133 | 44 132 | cncfco | ⊢ ( 𝜑  →  ( ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 )  ∘  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 134 | 26 133 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 135 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 136 | 134 135 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 137 | 136 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢  ∈  ℂ ) | 
						
							| 138 |  | iccntr | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) )  =  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 139 | 1 2 138 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) )  =  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 140 | 18 20 137 122 123 139 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ) | 
						
							| 141 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 142 | 141 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 143 |  | ioossicc | ⊢ ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 ) | 
						
							| 144 | 143 | sseli | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  →  𝑥  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 145 | 144 15 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐴  ∈  ( 𝑀 (,) 𝑁 ) ) | 
						
							| 146 |  | elin | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  ∩  𝐿1 )  ↔  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  ∧  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  𝐿1 ) ) | 
						
							| 147 | 7 146 | sylib | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  ∧  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  𝐿1 ) ) | 
						
							| 148 | 147 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 149 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 150 | 148 149 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 151 | 150 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 152 | 61 | fmpttd | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) | 
						
							| 153 |  | nfcv | ⊢ Ⅎ 𝑣 𝐶 | 
						
							| 154 |  | nfcsb1v | ⊢ Ⅎ 𝑢 ⦋ 𝑣  /  𝑢 ⦌ 𝐶 | 
						
							| 155 |  | csbeq1a | ⊢ ( 𝑢  =  𝑣  →  𝐶  =  ⦋ 𝑣  /  𝑢 ⦌ 𝐶 ) | 
						
							| 156 | 153 154 155 | cbvmpt | ⊢ ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 )  =  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ⦋ 𝑣  /  𝑢 ⦌ 𝐶 ) | 
						
							| 157 | 156 | fmpt | ⊢ ( ∀ 𝑣  ∈  ( 𝑀 (,) 𝑁 ) ⦋ 𝑣  /  𝑢 ⦌ 𝐶  ∈  ℂ  ↔  ( 𝑢  ∈  ( 𝑀 (,) 𝑁 )  ↦  𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) | 
						
							| 158 | 152 157 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ( 𝑀 (,) 𝑁 ) ⦋ 𝑣  /  𝑢 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 159 | 158 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 𝑀 (,) 𝑁 ) )  →  ⦋ 𝑣  /  𝑢 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 160 | 38 17 | sstri | ⊢ ( 𝑍 (,) 𝑊 )  ⊆  ℂ | 
						
							| 161 |  | cncff | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 162 | 6 161 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) | 
						
							| 163 | 162 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐴  ∈  ( 𝑍 (,) 𝑊 ) ) | 
						
							| 164 | 160 163 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 165 | 18 20 164 122 123 139 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐴 ) ) ) | 
						
							| 166 | 165 9 | eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) ) | 
						
							| 167 | 127 156 | eqtrdi | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ∫ ( 𝑀 (,) 𝑣 ) 𝐶  d 𝑢 ) )  =  ( 𝑣  ∈  ( 𝑀 (,) 𝑁 )  ↦  ⦋ 𝑣  /  𝑢 ⦌ 𝐶 ) ) | 
						
							| 168 |  | csbeq1 | ⊢ ( 𝑣  =  𝐴  →  ⦋ 𝑣  /  𝑢 ⦌ 𝐶  =  ⦋ 𝐴  /  𝑢 ⦌ 𝐶 ) | 
						
							| 169 | 142 142 145 151 81 159 166 167 25 168 | dvmptco | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 ) ) ) | 
						
							| 170 |  | nfcvd | ⊢ ( 𝐴  ∈  ( 𝑀 (,) 𝑁 )  →  Ⅎ 𝑢 𝐸 ) | 
						
							| 171 | 170 10 | csbiegf | ⊢ ( 𝐴  ∈  ( 𝑀 (,) 𝑁 )  →  ⦋ 𝐴  /  𝑢 ⦌ 𝐶  =  𝐸 ) | 
						
							| 172 | 145 171 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ⦋ 𝐴  /  𝑢 ⦌ 𝐶  =  𝐸 ) | 
						
							| 173 | 172 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 )  =  ( 𝐸  ·  𝐵 ) ) | 
						
							| 174 | 173 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ⦋ 𝐴  /  𝑢 ⦌ 𝐶  ·  𝐵 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) ) ) | 
						
							| 175 | 140 169 174 | 3eqtrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) ) ) | 
						
							| 176 |  | resmpt | ⊢ ( ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ↾  ( 𝑋 (,) 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ) | 
						
							| 177 | 143 176 | ax-mp | ⊢ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ↾  ( 𝑋 (,) 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) | 
						
							| 178 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  =  ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 ) ) | 
						
							| 179 | 163 21 178 10 | fmptco | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∘  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  =  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ) | 
						
							| 180 | 6 8 | cncfco | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∘  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 181 | 179 180 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 182 |  | rescncf | ⊢ ( ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ↾  ( 𝑋 (,) 𝑌 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) | 
						
							| 183 | 143 181 182 | mpsyl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ↾  ( 𝑋 (,) 𝑌 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 184 | 177 183 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 185 | 184 148 | mulcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 186 | 175 185 | eqeltrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 187 |  | ioombl | ⊢ ( 𝑋 (,) 𝑌 )  ∈  dom  vol | 
						
							| 188 | 187 | a1i | ⊢ ( 𝜑  →  ( 𝑋 (,) 𝑌 )  ∈  dom  vol ) | 
						
							| 189 |  | fco | ⊢ ( ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ  ∧  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∘  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 190 | 59 162 189 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∘  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 191 | 179 | feq1d | ⊢ ( 𝜑  →  ( ( ( 𝑢  ∈  ( 𝑍 (,) 𝑊 )  ↦  𝐶 )  ∘  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ  ↔  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) ) | 
						
							| 192 | 190 191 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 193 | 192 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐸  ∈  ℂ ) | 
						
							| 194 | 144 193 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐸  ∈  ℂ ) | 
						
							| 195 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ) | 
						
							| 196 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) ) | 
						
							| 197 | 188 194 151 195 196 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∘f   ·  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) ) ) | 
						
							| 198 | 175 197 | eqtr4d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) )  =  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∘f   ·  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) ) ) | 
						
							| 199 | 143 | a1i | ⊢ ( 𝜑  →  ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 200 |  | cniccibl | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ  ∧  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) )  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ∈  𝐿1 ) | 
						
							| 201 | 1 2 181 200 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ∈  𝐿1 ) | 
						
							| 202 | 199 188 193 201 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∈  𝐿1 ) | 
						
							| 203 |  | iblmbf | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∈  𝐿1  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∈  MblFn ) | 
						
							| 204 | 202 203 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∈  MblFn ) | 
						
							| 205 | 147 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 206 |  | cniccbdd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ  ∧  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) | 
						
							| 207 | 1 2 181 206 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) | 
						
							| 208 |  | ssralv | ⊢ ( ( 𝑋 (,) 𝑌 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  →  ∀ 𝑧  ∈  ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) ) | 
						
							| 209 | 143 208 | ax-mp | ⊢ ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  →  ∀ 𝑧  ∈  ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) | 
						
							| 210 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) | 
						
							| 211 | 210 194 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  =  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 212 | 211 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  dom  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  ↔  ∀ 𝑧  ∈  ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) ) | 
						
							| 213 | 177 | fveq1i | ⊢ ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ↾  ( 𝑋 (,) 𝑌 ) ) ‘ 𝑧 )  =  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) | 
						
							| 214 |  | fvres | ⊢ ( 𝑧  ∈  ( 𝑋 (,) 𝑌 )  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 )  ↾  ( 𝑋 (,) 𝑌 ) ) ‘ 𝑧 )  =  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) ) | 
						
							| 215 | 213 214 | eqtr3id | ⊢ ( 𝑧  ∈  ( 𝑋 (,) 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 )  =  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) ) | 
						
							| 216 | 215 | fveq2d | ⊢ ( 𝑧  ∈  ( 𝑋 (,) 𝑌 )  →  ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  =  ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) ) ) | 
						
							| 217 | 216 | breq1d | ⊢ ( 𝑧  ∈  ( 𝑋 (,) 𝑌 )  →  ( ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  ↔  ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) ) | 
						
							| 218 | 217 | ralbiia | ⊢ ( ∀ 𝑧  ∈  ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  ↔  ∀ 𝑧  ∈  ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) | 
						
							| 219 | 212 218 | bitr2di | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  ↔  ∀ 𝑧  ∈  dom  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) ) | 
						
							| 220 | 209 219 | imbitrid | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  →  ∀ 𝑧  ∈  dom  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) ) | 
						
							| 221 | 220 | reximdv | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  dom  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) ) | 
						
							| 222 | 207 221 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  dom  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 ) | 
						
							| 223 |  | bddmulibl | ⊢ ( ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∈  MblFn  ∧  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 )  ∈  𝐿1  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  dom  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ( abs ‘ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 ) ‘ 𝑧 ) )  ≤  𝑦 )  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∘f   ·  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) )  ∈  𝐿1 ) | 
						
							| 224 | 204 205 222 223 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐸 )  ∘f   ·  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐵 ) )  ∈  𝐿1 ) | 
						
							| 225 | 198 224 | eqeltrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) )  ∈  𝐿1 ) | 
						
							| 226 | 1 2 3 186 225 134 | ftc2 | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑡 )  d 𝑡  =  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑌 )  −  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑋 ) ) ) | 
						
							| 227 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑡 )  =  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑥 ) ) | 
						
							| 228 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 229 |  | nfcv | ⊢ Ⅎ 𝑥  D | 
						
							| 230 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) | 
						
							| 231 | 228 229 230 | nfov | ⊢ Ⅎ 𝑥 ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) | 
						
							| 232 |  | nfcv | ⊢ Ⅎ 𝑥 𝑡 | 
						
							| 233 | 231 232 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑡 ) | 
						
							| 234 |  | nfcv | ⊢ Ⅎ 𝑡 ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑥 ) | 
						
							| 235 | 227 233 234 | cbvitg | ⊢ ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑥 )  d 𝑥 | 
						
							| 236 | 175 | fveq1d | ⊢ ( 𝜑  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) ) ‘ 𝑥 ) ) | 
						
							| 237 |  | ovex | ⊢ ( 𝐸  ·  𝐵 )  ∈  V | 
						
							| 238 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) )  =  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) ) | 
						
							| 239 | 238 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ∧  ( 𝐸  ·  𝐵 )  ∈  V )  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) ) ‘ 𝑥 )  =  ( 𝐸  ·  𝐵 ) ) | 
						
							| 240 | 237 239 | mpan2 | ⊢ ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( 𝐸  ·  𝐵 ) ) ‘ 𝑥 )  =  ( 𝐸  ·  𝐵 ) ) | 
						
							| 241 | 236 240 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑥 )  =  ( 𝐸  ·  𝐵 ) ) | 
						
							| 242 | 241 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 243 | 235 242 | eqtrid | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ  D  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸  ·  𝐵 )  d 𝑥 ) | 
						
							| 244 | 28 15 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝐴  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 245 |  | elicc2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝐴  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑀  ≤  𝐴  ∧  𝐴  ≤  𝑁 ) ) ) | 
						
							| 246 | 49 46 245 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑀  ≤  𝐴  ∧  𝐴  ≤  𝑁 ) ) ) | 
						
							| 247 | 246 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( 𝐴  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑀  ≤  𝐴  ∧  𝐴  ≤  𝑁 ) ) ) | 
						
							| 248 | 244 247 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( 𝐴  ∈  ℝ  ∧  𝑀  ≤  𝐴  ∧  𝐴  ≤  𝑁 ) ) | 
						
							| 249 | 248 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  𝑀  ≤  𝐴 ) | 
						
							| 250 | 249 | ditgpos | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 [,] 𝑌 ) )  →  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢  =  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) | 
						
							| 251 | 250 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 )  =  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ) | 
						
							| 252 | 251 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 ) ‘ 𝑌 )  =  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑌 ) ) | 
						
							| 253 |  | ubicc2 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑌  ∈  ℝ*  ∧  𝑋  ≤  𝑌 )  →  𝑌  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 254 | 96 97 3 253 | syl3anc | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 255 |  | ditgeq2 | ⊢ ( 𝐴  =  𝐿  →  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 256 | 12 255 | syl | ⊢ ( 𝑥  =  𝑌  →  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 257 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 )  =  ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 ) | 
						
							| 258 |  | ditgex | ⊢ ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢  ∈  V | 
						
							| 259 | 256 257 258 | fvmpt | ⊢ ( 𝑌  ∈  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 ) ‘ 𝑌 )  =  ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 260 | 254 259 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 ) ‘ 𝑌 )  =  ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 261 | 252 260 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑌 )  =  ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 262 | 251 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 ) ‘ 𝑋 )  =  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑋 ) ) | 
						
							| 263 |  | ditgeq2 | ⊢ ( 𝐴  =  𝐾  →  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 ) | 
						
							| 264 | 11 263 | syl | ⊢ ( 𝑥  =  𝑋  →  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢  =  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 ) | 
						
							| 265 |  | ditgex | ⊢ ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢  ∈  V | 
						
							| 266 | 264 257 265 | fvmpt | ⊢ ( 𝑋  ∈  ( 𝑋 [,] 𝑌 )  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 ) ‘ 𝑋 )  =  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 ) | 
						
							| 267 | 99 266 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ⨜ [ 𝑀  →  𝐴 ] 𝐶  d 𝑢 ) ‘ 𝑋 )  =  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 ) | 
						
							| 268 | 262 267 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑋 )  =  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 ) | 
						
							| 269 | 261 268 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑌 )  −  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑋 ) )  =  ( ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢  −  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 ) ) | 
						
							| 270 |  | lbicc2 | ⊢ ( ( 𝑀  ∈  ℝ*  ∧  𝑁  ∈  ℝ*  ∧  𝑀  ≤  𝑁 )  →  𝑀  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 271 | 108 47 114 270 | syl3anc | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 272 | 11 | eleq1d | ⊢ ( 𝑥  =  𝑋  →  ( 𝐴  ∈  ( 𝑀 [,] 𝑁 )  ↔  𝐾  ∈  ( 𝑀 [,] 𝑁 ) ) ) | 
						
							| 273 | 244 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝑋 [,] 𝑌 ) 𝐴  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 274 | 272 273 99 | rspcdva | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 275 | 12 | eleq1d | ⊢ ( 𝑥  =  𝑌  →  ( 𝐴  ∈  ( 𝑀 [,] 𝑁 )  ↔  𝐿  ∈  ( 𝑀 [,] 𝑁 ) ) ) | 
						
							| 276 | 275 273 254 | rspcdva | ⊢ ( 𝜑  →  𝐿  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 277 | 49 46 271 274 276 61 77 | ditgsplit | ⊢ ( 𝜑  →  ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢  =  ( ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢  +  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) ) | 
						
							| 278 | 277 | oveq1d | ⊢ ( 𝜑  →  ( ⨜ [ 𝑀  →  𝐿 ] 𝐶  d 𝑢  −  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 )  =  ( ( ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢  +  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 )  −  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 ) ) | 
						
							| 279 | 49 46 271 274 61 77 | ditgcl | ⊢ ( 𝜑  →  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢  ∈  ℂ ) | 
						
							| 280 | 49 46 274 276 61 77 | ditgcl | ⊢ ( 𝜑  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  ∈  ℂ ) | 
						
							| 281 | 279 280 | pncan2d | ⊢ ( 𝜑  →  ( ( ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢  +  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 )  −  ⨜ [ 𝑀  →  𝐾 ] 𝐶  d 𝑢 )  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 282 | 269 278 281 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑌 )  −  ( ( 𝑥  ∈  ( 𝑋 [,] 𝑌 )  ↦  ∫ ( 𝑀 (,) 𝐴 ) 𝐶  d 𝑢 ) ‘ 𝑋 ) )  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 283 | 226 243 282 | 3eqtr3d | ⊢ ( 𝜑  →  ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸  ·  𝐵 )  d 𝑥  =  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢 ) | 
						
							| 284 | 16 283 | eqtr2d | ⊢ ( 𝜑  →  ⨜ [ 𝐾  →  𝐿 ] 𝐶  d 𝑢  =  ⨜ [ 𝑋  →  𝑌 ] ( 𝐸  ·  𝐵 )  d 𝑥 ) |