Step |
Hyp |
Ref |
Expression |
1 |
|
itgsubst.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
itgsubst.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
itgsubst.le |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
4 |
|
itgsubst.z |
⊢ ( 𝜑 → 𝑍 ∈ ℝ* ) |
5 |
|
itgsubst.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ* ) |
6 |
|
itgsubst.a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) |
7 |
|
itgsubst.b |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
8 |
|
itgsubst.c |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) ) |
9 |
|
itgsubst.da |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
10 |
|
itgsubst.e |
⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) |
11 |
|
itgsubst.k |
⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) |
12 |
|
itgsubst.l |
⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) |
13 |
|
itgsubst.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 (,) 𝑊 ) ) |
14 |
|
itgsubst.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 (,) 𝑊 ) ) |
15 |
|
itgsubst.cl2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑀 (,) 𝑁 ) ) |
16 |
3
|
ditgpos |
⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
17 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
18 |
17
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
19 |
|
iccssre |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
20 |
1 2 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
21 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) |
22 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) = ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝑀 (,) 𝑣 ) = ( 𝑀 (,) 𝐴 ) ) |
24 |
|
itgeq1 |
⊢ ( ( 𝑀 (,) 𝑣 ) = ( 𝑀 (,) 𝐴 ) → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 = ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) |
25 |
23 24
|
syl |
⊢ ( 𝑣 = 𝐴 → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 = ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) |
26 |
15 21 22 25
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) |
27 |
15
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) |
28 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
29 |
|
eliooord |
⊢ ( 𝑀 ∈ ( 𝑍 (,) 𝑊 ) → ( 𝑍 < 𝑀 ∧ 𝑀 < 𝑊 ) ) |
30 |
13 29
|
syl |
⊢ ( 𝜑 → ( 𝑍 < 𝑀 ∧ 𝑀 < 𝑊 ) ) |
31 |
30
|
simpld |
⊢ ( 𝜑 → 𝑍 < 𝑀 ) |
32 |
|
eliooord |
⊢ ( 𝑁 ∈ ( 𝑍 (,) 𝑊 ) → ( 𝑍 < 𝑁 ∧ 𝑁 < 𝑊 ) ) |
33 |
14 32
|
syl |
⊢ ( 𝜑 → ( 𝑍 < 𝑁 ∧ 𝑁 < 𝑊 ) ) |
34 |
33
|
simprd |
⊢ ( 𝜑 → 𝑁 < 𝑊 ) |
35 |
|
iccssioo |
⊢ ( ( ( 𝑍 ∈ ℝ* ∧ 𝑊 ∈ ℝ* ) ∧ ( 𝑍 < 𝑀 ∧ 𝑁 < 𝑊 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) ) |
36 |
4 5 31 34 35
|
syl22anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) ) |
37 |
28 36
|
sstrid |
⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) ) |
38 |
|
ioossre |
⊢ ( 𝑍 (,) 𝑊 ) ⊆ ℝ |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( 𝑍 (,) 𝑊 ) ⊆ ℝ ) |
40 |
39 17
|
sstrdi |
⊢ ( 𝜑 → ( 𝑍 (,) 𝑊 ) ⊆ ℂ ) |
41 |
37 40
|
sstrd |
⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ℂ ) |
42 |
|
cncffvrn |
⊢ ( ( ( 𝑀 (,) 𝑁 ) ⊆ ℂ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) ) |
43 |
41 6 42
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ) ) |
44 |
27 43
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑀 (,) 𝑁 ) ) ) |
45 |
28
|
sseli |
⊢ ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) → 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) |
46 |
38 14
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
47 |
46
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
49 |
38 13
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
50 |
|
elicc2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁 ) ) ) |
51 |
49 46 50
|
syl2anc |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁 ) ) ) |
52 |
51
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑣 ∈ ℝ ∧ 𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁 ) ) |
53 |
52
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑣 ≤ 𝑁 ) |
54 |
|
iooss2 |
⊢ ( ( 𝑁 ∈ ℝ* ∧ 𝑣 ≤ 𝑁 ) → ( 𝑀 (,) 𝑣 ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
55 |
48 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑀 (,) 𝑣 ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
56 |
55
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ) → 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) |
57 |
37
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ) |
58 |
|
cncff |
⊢ ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ) |
59 |
8 58
|
syl |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ) |
60 |
59
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ) → 𝐶 ∈ ℂ ) |
61 |
57 60
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℂ ) |
62 |
61
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐶 ∈ ℂ ) |
63 |
56 62
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ) → 𝐶 ∈ ℂ ) |
64 |
|
ioombl |
⊢ ( 𝑀 (,) 𝑣 ) ∈ dom vol |
65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑀 (,) 𝑣 ) ∈ dom vol ) |
66 |
28
|
a1i |
⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
67 |
|
ioombl |
⊢ ( 𝑀 (,) 𝑁 ) ∈ dom vol |
68 |
67
|
a1i |
⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ∈ dom vol ) |
69 |
36
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ) |
70 |
69 60
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐶 ∈ ℂ ) |
71 |
36
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ↾ ( 𝑀 [,] 𝑁 ) ) = ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ) |
72 |
|
rescncf |
⊢ ( ( 𝑀 [,] 𝑁 ) ⊆ ( 𝑍 (,) 𝑊 ) → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) ) |
73 |
36 8 72
|
sylc |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ↾ ( 𝑀 [,] 𝑁 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) |
74 |
71 73
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) |
75 |
|
cniccibl |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) ) → ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
76 |
49 46 74 75
|
syl3anc |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
77 |
66 68 70 76
|
iblss |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
79 |
55 65 62 78
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
80 |
63 79
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ∈ ℂ ) |
81 |
45 80
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ∈ ℂ ) |
82 |
81
|
fmpttd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) |
83 |
37 38
|
sstrdi |
⊢ ( 𝜑 → ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) |
84 |
|
fveq2 |
⊢ ( 𝑡 = 𝑢 → ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) = ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) ) |
85 |
|
nffvmpt1 |
⊢ Ⅎ 𝑢 ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) |
86 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) |
87 |
84 85 86
|
cbvitg |
⊢ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) d 𝑢 |
88 |
|
eqid |
⊢ ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) |
89 |
88
|
fvmpt2 |
⊢ ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) = 𝐶 ) |
90 |
56 63 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) ∧ 𝑢 ∈ ( 𝑀 (,) 𝑣 ) ) → ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) = 𝐶 ) |
91 |
90
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑢 ) d 𝑢 = ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) |
92 |
87 91
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ) → ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) |
93 |
92
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) = ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) |
94 |
93
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) ) = ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) ) |
95 |
|
eqid |
⊢ ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) = ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) |
96 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
97 |
2
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
98 |
|
lbicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
99 |
96 97 3 98
|
syl3anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
100 |
|
n0i |
⊢ ( 𝑋 ∈ ( 𝑋 [,] 𝑌 ) → ¬ ( 𝑋 [,] 𝑌 ) = ∅ ) |
101 |
99 100
|
syl |
⊢ ( 𝜑 → ¬ ( 𝑋 [,] 𝑌 ) = ∅ ) |
102 |
|
feq3 |
⊢ ( ( 𝑀 (,) 𝑁 ) = ∅ → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑀 (,) 𝑁 ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ) ) |
103 |
27 102
|
syl5ibcom |
⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) = ∅ → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ) ) |
104 |
|
f00 |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ ↔ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ∅ ∧ ( 𝑋 [,] 𝑌 ) = ∅ ) ) |
105 |
104
|
simprbi |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ∅ → ( 𝑋 [,] 𝑌 ) = ∅ ) |
106 |
103 105
|
syl6 |
⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) = ∅ → ( 𝑋 [,] 𝑌 ) = ∅ ) ) |
107 |
101 106
|
mtod |
⊢ ( 𝜑 → ¬ ( 𝑀 (,) 𝑁 ) = ∅ ) |
108 |
49
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
109 |
|
ioo0 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( ( 𝑀 (,) 𝑁 ) = ∅ ↔ 𝑁 ≤ 𝑀 ) ) |
110 |
108 47 109
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 (,) 𝑁 ) = ∅ ↔ 𝑁 ≤ 𝑀 ) ) |
111 |
107 110
|
mtbid |
⊢ ( 𝜑 → ¬ 𝑁 ≤ 𝑀 ) |
112 |
46 49
|
letrid |
⊢ ( 𝜑 → ( 𝑁 ≤ 𝑀 ∨ 𝑀 ≤ 𝑁 ) ) |
113 |
112
|
ord |
⊢ ( 𝜑 → ( ¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁 ) ) |
114 |
111 113
|
mpd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
115 |
|
resmpt |
⊢ ( ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) |
116 |
28 115
|
ax-mp |
⊢ ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) |
117 |
|
rescncf |
⊢ ( ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℂ ) → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) ) |
118 |
28 74 117
|
mpsyl |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐶 ) ↾ ( 𝑀 (,) 𝑁 ) ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) |
119 |
116 118
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) |
120 |
95 49 46 114 119 77
|
ftc1cn |
⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) ( ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ‘ 𝑡 ) d 𝑡 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) |
121 |
36 38
|
sstrdi |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
122 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
123 |
122
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
124 |
|
iccntr |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) |
125 |
49 46 124
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑀 [,] 𝑁 ) ) = ( 𝑀 (,) 𝑁 ) ) |
126 |
18 121 80 123 122 125
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 [,] 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) ) |
127 |
94 120 126
|
3eqtr3rd |
⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) |
128 |
127
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = dom ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) ) |
129 |
88 61
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) = ( 𝑀 (,) 𝑁 ) ) |
130 |
128 129
|
eqtrd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑀 (,) 𝑁 ) ) |
131 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) ∧ dom ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑀 (,) 𝑁 ) ) → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) |
132 |
18 82 83 130 131
|
syl31anc |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑀 (,) 𝑁 ) –cn→ ℂ ) ) |
133 |
44 132
|
cncfco |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
134 |
26 133
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
135 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
136 |
134 135
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
137 |
136
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ∈ ℂ ) |
138 |
|
iccntr |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
139 |
1 2 138
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
140 |
18 20 137 123 122 139
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ) |
141 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
142 |
141
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
143 |
|
ioossicc |
⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) |
144 |
143
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
145 |
144 15
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ( 𝑀 (,) 𝑁 ) ) |
146 |
|
elin |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ↔ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∧ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ) ) |
147 |
7 146
|
sylib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∧ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ) ) |
148 |
147
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
149 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
150 |
148 149
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
151 |
150
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐵 ∈ ℂ ) |
152 |
61
|
fmpttd |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) |
153 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐶 |
154 |
|
nfcsb1v |
⊢ Ⅎ 𝑢 ⦋ 𝑣 / 𝑢 ⦌ 𝐶 |
155 |
|
csbeq1a |
⊢ ( 𝑢 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) |
156 |
153 154 155
|
cbvmpt |
⊢ ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) = ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) |
157 |
156
|
fmpt |
⊢ ( ∀ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ∈ ℂ ↔ ( 𝑢 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐶 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℂ ) |
158 |
152 157
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ∈ ℂ ) |
159 |
158
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ∈ ℂ ) |
160 |
38 17
|
sstri |
⊢ ( 𝑍 (,) 𝑊 ) ⊆ ℂ |
161 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
162 |
6 161
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) |
163 |
162
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑍 (,) 𝑊 ) ) |
164 |
160 163
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ℂ ) |
165 |
18 20 164 123 122 139
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) ) |
166 |
165 9
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
167 |
127 156
|
eqtrdi |
⊢ ( 𝜑 → ( ℝ D ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ∫ ( 𝑀 (,) 𝑣 ) 𝐶 d 𝑢 ) ) = ( 𝑣 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑣 / 𝑢 ⦌ 𝐶 ) ) |
168 |
|
csbeq1 |
⊢ ( 𝑣 = 𝐴 → ⦋ 𝑣 / 𝑢 ⦌ 𝐶 = ⦋ 𝐴 / 𝑢 ⦌ 𝐶 ) |
169 |
142 142 145 151 81 159 166 167 25 168
|
dvmptco |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) ) ) |
170 |
|
nfcvd |
⊢ ( 𝐴 ∈ ( 𝑀 (,) 𝑁 ) → Ⅎ 𝑢 𝐸 ) |
171 |
170 10
|
csbiegf |
⊢ ( 𝐴 ∈ ( 𝑀 (,) 𝑁 ) → ⦋ 𝐴 / 𝑢 ⦌ 𝐶 = 𝐸 ) |
172 |
145 171
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ⦋ 𝐴 / 𝑢 ⦌ 𝐶 = 𝐸 ) |
173 |
172
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) = ( 𝐸 · 𝐵 ) ) |
174 |
173
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ⦋ 𝐴 / 𝑢 ⦌ 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ) |
175 |
140 169 174
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ) |
176 |
|
resmpt |
⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ) |
177 |
143 176
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) |
178 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) = ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ) |
179 |
163 21 178 10
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ) |
180 |
6 8
|
cncfco |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
181 |
179 180
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
182 |
|
rescncf |
⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) |
183 |
143 181 182
|
mpsyl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
184 |
177 183
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
185 |
184 148
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
186 |
175 185
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
187 |
|
ioombl |
⊢ ( 𝑋 (,) 𝑌 ) ∈ dom vol |
188 |
187
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ∈ dom vol ) |
189 |
|
fco |
⊢ ( ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) : ( 𝑍 (,) 𝑊 ) ⟶ ℂ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) ) → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
190 |
59 162 189
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
191 |
179
|
feq1d |
⊢ ( 𝜑 → ( ( ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∘ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) ) |
192 |
190 191
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
193 |
192
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐸 ∈ ℂ ) |
194 |
144 193
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐸 ∈ ℂ ) |
195 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ) |
196 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
197 |
188 194 151 195 196
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ) |
198 |
175 197
|
eqtr4d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) ) |
199 |
143
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) ) |
200 |
|
cniccibl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
201 |
1 2 181 200
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
202 |
199 188 193 201
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
203 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ MblFn ) |
204 |
202 203
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ MblFn ) |
205 |
147
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ) |
206 |
|
cniccbdd |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
207 |
1 2 181 206
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
208 |
|
ssralv |
⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
209 |
143 208
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
210 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) |
211 |
210 194
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) = ( 𝑋 (,) 𝑌 ) ) |
212 |
211
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
213 |
177
|
fveq1i |
⊢ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) |
214 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ↾ ( 𝑋 (,) 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) |
215 |
213 214
|
eqtr3id |
⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) |
216 |
215
|
fveq2d |
⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ) |
217 |
216
|
breq1d |
⊢ ( 𝑧 ∈ ( 𝑋 (,) 𝑌 ) → ( ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
218 |
217
|
ralbiia |
⊢ ( ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
219 |
212 218
|
bitr2di |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
220 |
209 219
|
syl5ib |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
221 |
220
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
222 |
207 221
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
223 |
|
bddmulibl |
⊢ ( ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ MblFn ∧ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ 𝐿1 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ( abs ‘ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ‘ 𝑧 ) ) ≤ 𝑦 ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) ∈ 𝐿1 ) |
224 |
204 205 222 223
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∘f · ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) ∈ 𝐿1 ) |
225 |
198 224
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ∈ 𝐿1 ) |
226 |
1 2 3 186 225 134
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) ) |
227 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) = ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) ) |
228 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
229 |
|
nfcv |
⊢ Ⅎ 𝑥 D |
230 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) |
231 |
228 229 230
|
nfov |
⊢ Ⅎ 𝑥 ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) |
232 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑡 |
233 |
231 232
|
nffv |
⊢ Ⅎ 𝑥 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) |
234 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) |
235 |
227 233 234
|
cbvitg |
⊢ ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) d 𝑥 |
236 |
175
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ‘ 𝑥 ) ) |
237 |
|
ovex |
⊢ ( 𝐸 · 𝐵 ) ∈ V |
238 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) |
239 |
238
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ∧ ( 𝐸 · 𝐵 ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ‘ 𝑥 ) = ( 𝐸 · 𝐵 ) ) |
240 |
237 239
|
mpan2 |
⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 · 𝐵 ) ) ‘ 𝑥 ) = ( 𝐸 · 𝐵 ) ) |
241 |
236 240
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) = ( 𝐸 · 𝐵 ) ) |
242 |
241
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
243 |
235 242
|
syl5eq |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 ) |
244 |
28 15
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ) |
245 |
|
elicc2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ) |
246 |
49 46 245
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ) |
247 |
246
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ) |
248 |
244 247
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 ∈ ℝ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) |
249 |
248
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑀 ≤ 𝐴 ) |
250 |
249
|
ditgpos |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) |
251 |
250
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ) |
252 |
251
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑌 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) ) |
253 |
|
ubicc2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
254 |
96 97 3 253
|
syl3anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
255 |
|
ditgeq2 |
⊢ ( 𝐴 = 𝐿 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
256 |
12 255
|
syl |
⊢ ( 𝑥 = 𝑌 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
257 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) |
258 |
|
ditgex |
⊢ ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ∈ V |
259 |
256 257 258
|
fvmpt |
⊢ ( 𝑌 ∈ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑌 ) = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
260 |
254 259
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑌 ) = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
261 |
252 260
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) = ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 ) |
262 |
251
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) |
263 |
|
ditgeq2 |
⊢ ( 𝐴 = 𝐾 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
264 |
11 263
|
syl |
⊢ ( 𝑥 = 𝑋 → ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
265 |
|
ditgex |
⊢ ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ∈ V |
266 |
264 257 265
|
fvmpt |
⊢ ( 𝑋 ∈ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑋 ) = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
267 |
99 266
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ⨜ [ 𝑀 → 𝐴 ] 𝐶 d 𝑢 ) ‘ 𝑋 ) = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
268 |
262 267
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) = ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) |
269 |
261 268
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) = ( ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) ) |
270 |
|
lbicc2 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) |
271 |
108 47 114 270
|
syl3anc |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) |
272 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ 𝐾 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
273 |
244
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ) |
274 |
272 273 99
|
rspcdva |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 [,] 𝑁 ) ) |
275 |
12
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ( 𝑀 [,] 𝑁 ) ↔ 𝐿 ∈ ( 𝑀 [,] 𝑁 ) ) ) |
276 |
275 273 254
|
rspcdva |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑀 [,] 𝑁 ) ) |
277 |
49 46 271 274 276 61 77
|
ditgsplit |
⊢ ( 𝜑 → ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 = ( ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 + ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) ) |
278 |
277
|
oveq1d |
⊢ ( 𝜑 → ( ⨜ [ 𝑀 → 𝐿 ] 𝐶 d 𝑢 − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) = ( ( ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 + ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) ) |
279 |
49 46 271 274 61 77
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ∈ ℂ ) |
280 |
49 46 274 276 61 77
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ∈ ℂ ) |
281 |
279 280
|
pncan2d |
⊢ ( 𝜑 → ( ( ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 + ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) − ⨜ [ 𝑀 → 𝐾 ] 𝐶 d 𝑢 ) = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
282 |
269 278 281
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ∫ ( 𝑀 (,) 𝐴 ) 𝐶 d 𝑢 ) ‘ 𝑋 ) ) = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
283 |
226 243 282
|
3eqtr3d |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
284 |
16 283
|
eqtr2d |
⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |