Step |
Hyp |
Ref |
Expression |
1 |
|
itgulm.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
itgulm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
itgulm.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝐿1 ) |
4 |
|
itgulm.u |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
5 |
|
itgulm.s |
⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
7 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
8 |
|
ulmf2 |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
9 |
7 4 8
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
11 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) |
12 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( vol ‘ 𝑆 ) ∈ ℝ ) |
16 |
|
ulmcl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) |
17 |
|
fdm |
⊢ ( 𝐺 : 𝑆 ⟶ ℂ → dom 𝐺 = 𝑆 ) |
18 |
4 16 17
|
3syl |
⊢ ( 𝜑 → dom 𝐺 = 𝑆 ) |
19 |
1 2 3 4 5
|
iblulm |
⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |
20 |
|
iblmbf |
⊢ ( 𝐺 ∈ 𝐿1 → 𝐺 ∈ MblFn ) |
21 |
|
mbfdm |
⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) |
22 |
19 20 21
|
3syl |
⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
23 |
18 22
|
eqeltrrd |
⊢ ( 𝜑 → 𝑆 ∈ dom vol ) |
24 |
|
mblss |
⊢ ( 𝑆 ∈ dom vol → 𝑆 ⊆ ℝ ) |
25 |
|
ovolge0 |
⊢ ( 𝑆 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝑆 ) ) |
26 |
23 24 25
|
3syl |
⊢ ( 𝜑 → 0 ≤ ( vol* ‘ 𝑆 ) ) |
27 |
|
mblvol |
⊢ ( 𝑆 ∈ dom vol → ( vol ‘ 𝑆 ) = ( vol* ‘ 𝑆 ) ) |
28 |
23 27
|
syl |
⊢ ( 𝜑 → ( vol ‘ 𝑆 ) = ( vol* ‘ 𝑆 ) ) |
29 |
26 28
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( vol ‘ 𝑆 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 0 ≤ ( vol ‘ 𝑆 ) ) |
31 |
15 30
|
ge0p1rpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ+ ) |
32 |
14 31
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ+ ) |
33 |
1 6 10 11 12 13 32
|
ulmi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
34 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
35 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) ) |
36 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
38 |
37
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
39 |
38
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
40 |
39
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
41 |
37
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
42 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐿1 ) |
43 |
41 42
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
44 |
43
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
45 |
4 16
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
46 |
45
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
47 |
46
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
48 |
45
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
49 |
48 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
51 |
40 44 47 50
|
itgsub |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 = ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) |
52 |
51
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) = ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) ) |
53 |
40 47
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
54 |
40 44 47 50
|
iblsub |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
55 |
53 54
|
itgcl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ∈ ℂ ) |
56 |
55
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) ∈ ℝ ) |
57 |
53
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
58 |
53 54
|
iblabs |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ 𝐿1 ) |
59 |
57 58
|
itgrecl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
60 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
61 |
60
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 𝑟 ∈ ℝ ) |
62 |
53 54
|
itgabs |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) ≤ ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ) |
63 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ+ ) |
64 |
63
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ ) |
65 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( vol ‘ 𝑆 ) ∈ ℝ ) |
66 |
64 65
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ∈ ℝ ) |
67 |
|
fconstmpt |
⊢ ( 𝑆 × { ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) } ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
68 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 𝑆 ∈ dom vol ) |
69 |
63
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℂ ) |
70 |
|
iblconst |
⊢ ( ( 𝑆 ∈ dom vol ∧ ( vol ‘ 𝑆 ) ∈ ℝ ∧ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℂ ) → ( 𝑆 × { ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) } ) ∈ 𝐿1 ) |
71 |
68 65 69 70
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑆 × { ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) } ) ∈ 𝐿1 ) |
72 |
67 71
|
eqeltrrid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ∈ 𝐿1 ) |
73 |
64
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ ) |
74 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
75 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
76 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
77 |
75 76
|
oveq12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
78 |
77
|
fveq2d |
⊢ ( 𝑧 = 𝑥 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
79 |
78
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) |
80 |
79
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
81 |
74 80
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
82 |
57 73 81
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
83 |
58 72 57 73 82
|
itgle |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ≤ ∫ 𝑆 ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) d 𝑥 ) |
84 |
|
itgconst |
⊢ ( ( 𝑆 ∈ dom vol ∧ ( vol ‘ 𝑆 ) ∈ ℝ ∧ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℂ ) → ∫ 𝑆 ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) d 𝑥 = ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) |
85 |
68 65 69 84
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) d 𝑥 = ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) |
86 |
83 85
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ≤ ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) |
87 |
61
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 𝑟 ∈ ℂ ) |
88 |
65
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( vol ‘ 𝑆 ) ∈ ℂ ) |
89 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ+ ) |
90 |
89
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℂ ) |
91 |
89
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ≠ 0 ) |
92 |
87 88 90 91
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 · ( vol ‘ 𝑆 ) ) / ( ( vol ‘ 𝑆 ) + 1 ) ) = ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) |
93 |
65
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( vol ‘ 𝑆 ) < ( ( vol ‘ 𝑆 ) + 1 ) ) |
94 |
|
peano2re |
⊢ ( ( vol ‘ 𝑆 ) ∈ ℝ → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ ) |
95 |
65 94
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ ) |
96 |
|
rpgt0 |
⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) |
97 |
96
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 0 < 𝑟 ) |
98 |
|
ltmul2 |
⊢ ( ( ( vol ‘ 𝑆 ) ∈ ℝ ∧ ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ ∧ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ) → ( ( vol ‘ 𝑆 ) < ( ( vol ‘ 𝑆 ) + 1 ) ↔ ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) |
99 |
65 95 61 97 98
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) < ( ( vol ‘ 𝑆 ) + 1 ) ↔ ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) |
100 |
93 99
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
101 |
61 65
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 · ( vol ‘ 𝑆 ) ) ∈ ℝ ) |
102 |
101 61 89
|
ltdivmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( ( 𝑟 · ( vol ‘ 𝑆 ) ) / ( ( vol ‘ 𝑆 ) + 1 ) ) < 𝑟 ↔ ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) |
103 |
100 102
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 · ( vol ‘ 𝑆 ) ) / ( ( vol ‘ 𝑆 ) + 1 ) ) < 𝑟 ) |
104 |
92 103
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) < 𝑟 ) |
105 |
59 66 61 86 104
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 < 𝑟 ) |
106 |
56 59 61 62 105
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) < 𝑟 ) |
107 |
52 106
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) |
108 |
107
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
109 |
34 108
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
110 |
109
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
111 |
110
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
112 |
111
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
113 |
33 112
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) |
114 |
113
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) |
115 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
116 |
115
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ∈ V |
117 |
116
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ∈ V ) |
118 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
119 |
118
|
fveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝑘 = 𝑛 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
121 |
120
|
itgeq2dv |
⊢ ( 𝑘 = 𝑛 → ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ) |
122 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) = ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) |
123 |
|
itgex |
⊢ ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ∈ V |
124 |
121 122 123
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ‘ 𝑛 ) = ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ‘ 𝑛 ) = ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ) |
126 |
46 49
|
itgcl |
⊢ ( 𝜑 → ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
127 |
38 43
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
128 |
1 2 117 125 126 127
|
clim2c |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ⇝ ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
129 |
114 128
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ⇝ ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |