| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgvallem.1 | ⊢ ( i ↑ 𝐾 )  =  𝑇 | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑘  =  𝐾  →  ( i ↑ 𝑘 )  =  ( i ↑ 𝐾 ) ) | 
						
							| 3 | 2 1 | eqtrdi | ⊢ ( 𝑘  =  𝐾  →  ( i ↑ 𝑘 )  =  𝑇 ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝐵  /  ( i ↑ 𝑘 ) )  =  ( 𝐵  /  𝑇 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑘  =  𝐾  →  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ) | 
						
							| 6 | 5 | breq2d | ⊢ ( 𝑘  =  𝐾  →  ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ↔  0  ≤  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) )  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ) ) ) | 
						
							| 8 | 7 5 | ifbieq1d | ⊢ ( 𝑘  =  𝐾  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ,  0 ) ) | 
						
							| 9 | 8 | mpteq2dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ,  0 ) ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑘  =  𝐾  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  𝑇 ) ) ,  0 ) ) ) ) |