Step |
Hyp |
Ref |
Expression |
1 |
|
itgvallem.1 |
⊢ ( i ↑ 𝐾 ) = 𝑇 |
2 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( i ↑ 𝑘 ) = ( i ↑ 𝐾 ) ) |
3 |
2 1
|
eqtrdi |
⊢ ( 𝑘 = 𝐾 → ( i ↑ 𝑘 ) = 𝑇 ) |
4 |
3
|
oveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐵 / ( i ↑ 𝑘 ) ) = ( 𝐵 / 𝑇 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) |
6 |
5
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) ) ) |
8 |
7 5
|
ifbieq1d |
⊢ ( 𝑘 = 𝐾 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) , ( ℜ ‘ ( 𝐵 / 𝑇 ) ) , 0 ) ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) , ( ℜ ‘ ( 𝐵 / 𝑇 ) ) , 0 ) ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) , ( ℜ ‘ ( 𝐵 / 𝑇 ) ) , 0 ) ) ) ) |