| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgvallem3.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  =  0 ) | 
						
							| 2 | 1 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) )  →  𝐵  =  0 ) | 
						
							| 3 | 2 | ifeq1da | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  0 ,  0 ) ) | 
						
							| 4 |  | ifid | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  0 ,  0 )  =  0 | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  =  0 ) | 
						
							| 6 | 5 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 ) ) | 
						
							| 7 |  | fconstmpt | ⊢ ( ℝ  ×  { 0 } )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 8 | 6 7 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  =  ( ℝ  ×  { 0 } ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) ) ) | 
						
							| 10 |  | itg20 | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 11 | 9 10 | eqtrdi | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  =  0 ) |