Step |
Hyp |
Ref |
Expression |
1 |
|
itgvallem3.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 0 ) |
2 |
1
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 = 0 ) |
3 |
2
|
ifeq1da |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 0 , 0 ) ) |
4 |
|
ifid |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 0 , 0 ) = 0 |
5 |
3 4
|
eqtrdi |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = 0 ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
7 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
8 |
6 7
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( ℝ × { 0 } ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
10 |
|
itg20 |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |
11 |
9 10
|
eqtrdi |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) = 0 ) |