Step |
Hyp |
Ref |
Expression |
1 |
|
itgvol0.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
itgvol0.2 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) |
3 |
|
itgvol0.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ 𝐵 ) = ∅ |
5 |
|
iblempty |
⊢ ∅ ∈ 𝐿1 |
6 |
4 5
|
eqeltri |
⊢ ( 𝑥 ∈ ∅ ↦ 𝐵 ) ∈ 𝐿1 |
7 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
8 |
7
|
a1i |
⊢ ( 𝜑 → ∅ ⊆ 𝐴 ) |
9 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ ∅ ) ⊆ 𝐴 ) |
10 |
|
ovolssnul |
⊢ ( ( ( 𝐴 ∖ ∅ ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( 𝐴 ∖ ∅ ) ) = 0 ) |
11 |
9 1 2 10
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∖ ∅ ) ) = 0 ) |
12 |
8 1 11 3
|
itgss3 |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ∅ ↦ 𝐵 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) ∧ ∫ ∅ 𝐵 d 𝑥 = ∫ 𝐴 𝐵 d 𝑥 ) ) |
13 |
12
|
simpld |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∅ ↦ 𝐵 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) ) |
14 |
6 13
|
mpbii |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
15 |
12
|
simprd |
⊢ ( 𝜑 → ∫ ∅ 𝐵 d 𝑥 = ∫ 𝐴 𝐵 d 𝑥 ) |
16 |
|
itg0 |
⊢ ∫ ∅ 𝐵 d 𝑥 = 0 |
17 |
15 16
|
eqtr3di |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = 0 ) |
18 |
14 17
|
jca |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ∧ ∫ 𝐴 𝐵 d 𝑥 = 0 ) ) |