| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) |
| 2 |
1
|
dfitg |
⊢ ∫ 𝐴 0 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℕ0 ) |
| 5 |
|
expcl |
⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 6 |
3 4 5
|
sylancr |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 7 |
|
ine0 |
⊢ i ≠ 0 |
| 8 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) |
| 9 |
|
expne0i |
⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) |
| 10 |
3 7 8 9
|
mp3an12i |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( i ↑ 𝑘 ) ≠ 0 ) |
| 11 |
6 10
|
div0d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ 0 ) ) |
| 13 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = 0 ) |
| 15 |
14
|
ifeq1d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , 0 , 0 ) ) |
| 16 |
|
ifid |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , 0 , 0 ) = 0 |
| 17 |
15 16
|
eqtrdi |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) = 0 ) |
| 18 |
17
|
mpteq2dv |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 19 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
| 20 |
18 19
|
eqtr4di |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( ℝ × { 0 } ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
| 22 |
|
itg20 |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |
| 23 |
21 22
|
eqtrdi |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = 0 ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · 0 ) ) |
| 25 |
6
|
mul01d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · 0 ) = 0 ) |
| 26 |
24 25
|
eqtrd |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = 0 ) |
| 27 |
26
|
sumeq2i |
⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) 0 |
| 28 |
|
fzfi |
⊢ ( 0 ... 3 ) ∈ Fin |
| 29 |
28
|
olci |
⊢ ( ( 0 ... 3 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 3 ) ∈ Fin ) |
| 30 |
|
sumz |
⊢ ( ( ( 0 ... 3 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 3 ) ∈ Fin ) → Σ 𝑘 ∈ ( 0 ... 3 ) 0 = 0 ) |
| 31 |
29 30
|
ax-mp |
⊢ Σ 𝑘 ∈ ( 0 ... 3 ) 0 = 0 |
| 32 |
2 27 31
|
3eqtri |
⊢ ∫ 𝐴 0 d 𝑥 = 0 |