| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 2 | 1 | dfitg | ⊢ ∫ 𝐴 0  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 3 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 4 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 5 |  | expcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 6 | 3 4 5 | sylancr | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 7 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 8 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  𝑘  ∈  ℤ ) | 
						
							| 9 |  | expne0i | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  𝑘  ∈  ℤ )  →  ( i ↑ 𝑘 )  ≠  0 ) | 
						
							| 10 | 3 7 8 9 | mp3an12i | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( i ↑ 𝑘 )  ≠  0 ) | 
						
							| 11 | 6 10 | div0d | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( 0  /  ( i ↑ 𝑘 ) )  =  0 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ 0 ) ) | 
						
							| 13 |  | re0 | ⊢ ( ℜ ‘ 0 )  =  0 | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) )  =  0 ) | 
						
							| 15 | 14 | ifeq1d | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  0 ,  0 ) ) | 
						
							| 16 |  | ifid | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  0 ,  0 )  =  0 | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  0 ) | 
						
							| 18 | 17 | mpteq2dv | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 ) ) | 
						
							| 19 |  | fconstmpt | ⊢ ( ℝ  ×  { 0 } )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 20 | 18 19 | eqtr4di | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( ℝ  ×  { 0 } ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) ) ) | 
						
							| 22 |  | itg20 | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 23 | 21 22 | eqtrdi | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  0 ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  0 ) ) | 
						
							| 25 | 6 | mul01d | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  0 )  =  0 ) | 
						
							| 26 | 24 25 | eqtrd | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  0 ) | 
						
							| 27 | 26 | sumeq2i | ⊢ Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) 0 | 
						
							| 28 |  | fzfi | ⊢ ( 0 ... 3 )  ∈  Fin | 
						
							| 29 | 28 | olci | ⊢ ( ( 0 ... 3 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 3 )  ∈  Fin ) | 
						
							| 30 |  | sumz | ⊢ ( ( ( 0 ... 3 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 3 )  ∈  Fin )  →  Σ 𝑘  ∈  ( 0 ... 3 ) 0  =  0 ) | 
						
							| 31 | 29 30 | ax-mp | ⊢ Σ 𝑘  ∈  ( 0 ... 3 ) 0  =  0 | 
						
							| 32 | 2 27 31 | 3eqtri | ⊢ ∫ 𝐴 0  d 𝑥  =  0 |