Metamath Proof Explorer


Theorem itschlc0xyqsol1

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) )
itsclc0yqsol.d 𝐷 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) )
Assertion itschlc0xyqsol1 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ∧ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) )
2 itsclc0yqsol.d 𝐷 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) )
3 animorr ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) )
4 3 anim2i ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) )
5 1 2 itsclc0yqsol ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) )
6 4 5 syl3an1 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) )
7 6 imp ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) )
8 oveq1 ( 𝐴 = 0 → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) )
9 8 adantr ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) )
10 9 adantl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) )
11 10 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) )
12 rpcn ( 𝑅 ∈ ℝ+𝑅 ∈ ℂ )
13 12 adantr ( ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) → 𝑅 ∈ ℂ )
14 13 adantl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑅 ∈ ℂ )
15 14 sqcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ )
16 1 resum2sqcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ )
17 16 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℂ )
18 17 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝑄 ∈ ℂ )
19 18 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → 𝑄 ∈ ℂ )
20 19 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 ∈ ℂ )
21 15 20 mulcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) ∈ ℂ )
22 simpll3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐶 ∈ ℝ )
23 22 recnd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐶 ∈ ℂ )
24 23 sqcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐶 ↑ 2 ) ∈ ℂ )
25 21 24 subcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) ∈ ℂ )
26 2 25 eqeltrid ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐷 ∈ ℂ )
27 26 sqrtcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( √ ‘ 𝐷 ) ∈ ℂ )
28 27 mul02d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 0 · ( √ ‘ 𝐷 ) ) = 0 )
29 11 28 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = 0 )
30 29 oveq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( ( 𝐵 · 𝐶 ) − 0 ) )
31 simpll2 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐵 ∈ ℝ )
32 31 recnd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐵 ∈ ℂ )
33 32 23 mulcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ )
34 33 subid1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) − 0 ) = ( 𝐵 · 𝐶 ) )
35 30 34 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( 𝐵 · 𝐶 ) )
36 sq0i ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = 0 )
37 36 adantr ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑ 2 ) = 0 )
38 37 adantl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) = 0 )
39 38 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 ↑ 2 ) = 0 )
40 39 oveq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 0 + ( 𝐵 ↑ 2 ) ) )
41 32 sqcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 ↑ 2 ) ∈ ℂ )
42 41 addid2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 0 + ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) )
43 40 42 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) )
44 1 43 eqtrid ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 = ( 𝐵 ↑ 2 ) )
45 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
46 45 sqvald ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
47 46 3ad2ant2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
48 47 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
49 48 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
50 44 49 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 = ( 𝐵 · 𝐵 ) )
51 35 50 oveq12d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) )
52 simplrr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐵 ≠ 0 )
53 23 32 32 52 52 divcan5d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) = ( 𝐶 / 𝐵 ) )
54 51 53 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( 𝐶 / 𝐵 ) )
55 54 eqeq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ↔ 𝑌 = ( 𝐶 / 𝐵 ) ) )
56 55 biimpd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑌 = ( 𝐶 / 𝐵 ) ) )
57 29 oveq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( ( 𝐵 · 𝐶 ) + 0 ) )
58 33 addid1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) + 0 ) = ( 𝐵 · 𝐶 ) )
59 57 58 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( 𝐵 · 𝐶 ) )
60 59 44 oveq12d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( 𝐵 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) )
61 simp2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ )
62 61 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ )
63 62 sqvald ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
64 63 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) )
65 64 oveq2d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) )
66 simpl3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → 𝐶 ∈ ℝ )
67 66 recnd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → 𝐶 ∈ ℂ )
68 62 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ )
69 simpr ( ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 )
70 69 adantl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 )
71 67 68 68 70 70 divcan5d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) = ( 𝐶 / 𝐵 ) )
72 65 71 eqtrd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) = ( 𝐶 / 𝐵 ) )
73 72 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) = ( 𝐶 / 𝐵 ) )
74 60 73 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( 𝐶 / 𝐵 ) )
75 74 eqeq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ↔ 𝑌 = ( 𝐶 / 𝐵 ) ) )
76 75 biimpd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑌 = ( 𝐶 / 𝐵 ) ) )
77 56 76 jaod ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → 𝑌 = ( 𝐶 / 𝐵 ) ) )
78 77 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → 𝑌 = ( 𝐶 / 𝐵 ) ) )
79 78 adantr ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → 𝑌 = ( 𝐶 / 𝐵 ) ) )
80 oveq1 ( 𝑌 = ( 𝐶 / 𝐵 ) → ( 𝑌 ↑ 2 ) = ( ( 𝐶 / 𝐵 ) ↑ 2 ) )
81 80 oveq2d ( 𝑌 = ( 𝐶 / 𝐵 ) → ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( ( 𝑋 ↑ 2 ) + ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) )
82 81 eqeq1d ( 𝑌 = ( 𝐶 / 𝐵 ) → ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ↔ ( ( 𝑋 ↑ 2 ) + ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) )
83 15 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ )
84 23 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐶 ∈ ℂ )
85 32 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ∈ ℂ )
86 simp1rr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ≠ 0 )
87 84 85 86 divcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐶 / 𝐵 ) ∈ ℂ )
88 87 sqcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐶 / 𝐵 ) ↑ 2 ) ∈ ℂ )
89 simp3l ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑋 ∈ ℝ )
90 89 recnd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑋 ∈ ℂ )
91 90 sqcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 ↑ 2 ) ∈ ℂ )
92 83 88 91 subadd2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ↔ ( ( 𝑋 ↑ 2 ) + ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) )
93 23 32 52 sqdivd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐶 / 𝐵 ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )
94 93 oveq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) )
95 31 resqcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 ↑ 2 ) ∈ ℝ )
96 31 52 sqgt0d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 0 < ( 𝐵 ↑ 2 ) )
97 95 96 elrpd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 ↑ 2 ) ∈ ℝ+ )
98 97 rpcnne0d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 ↑ 2 ) ∈ ℂ ∧ ( 𝐵 ↑ 2 ) ≠ 0 ) )
99 subdivcomb1 ( ( ( 𝑅 ↑ 2 ) ∈ ℂ ∧ ( 𝐶 ↑ 2 ) ∈ ℂ ∧ ( ( 𝐵 ↑ 2 ) ∈ ℂ ∧ ( 𝐵 ↑ 2 ) ≠ 0 ) ) → ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) )
100 15 24 98 99 syl3anc ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) )
101 94 100 eqtr4d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) )
102 101 eqeq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ↔ ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ) )
103 102 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ↔ ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ) )
104 41 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 ↑ 2 ) ∈ ℂ )
105 104 83 mulcomd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) )
106 44 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑄 = ( 𝐵 ↑ 2 ) )
107 106 eqcomd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 ↑ 2 ) = 𝑄 )
108 107 oveq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑅 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) · 𝑄 ) )
109 105 108 eqtrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) · 𝑄 ) )
110 109 oveq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) )
111 110 oveq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) )
112 111 eqeq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ↔ ( ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ) )
113 2 oveq1i ( 𝐷 / ( 𝐵 ↑ 2 ) ) = ( ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) )
114 113 eqeq1i ( ( 𝐷 / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ↔ ( ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) )
115 eqcom ( ( 𝐷 / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) ↔ ( 𝑋 ↑ 2 ) = ( 𝐷 / ( 𝐵 ↑ 2 ) ) )
116 26 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐷 ∈ ℂ )
117 sqrtth ( 𝐷 ∈ ℂ → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 )
118 117 eqcomd ( 𝐷 ∈ ℂ → 𝐷 = ( ( √ ‘ 𝐷 ) ↑ 2 ) )
119 116 118 syl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐷 = ( ( √ ‘ 𝐷 ) ↑ 2 ) )
120 119 oveq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐷 / ( 𝐵 ↑ 2 ) ) = ( ( ( √ ‘ 𝐷 ) ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )
121 27 3adant3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( √ ‘ 𝐷 ) ∈ ℂ )
122 121 85 86 sqdivd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( √ ‘ 𝐷 ) / 𝐵 ) ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )
123 120 122 eqtr4d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐷 / ( 𝐵 ↑ 2 ) ) = ( ( ( √ ‘ 𝐷 ) / 𝐵 ) ↑ 2 ) )
124 123 eqeq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑋 ↑ 2 ) = ( 𝐷 / ( 𝐵 ↑ 2 ) ) ↔ ( 𝑋 ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) / 𝐵 ) ↑ 2 ) ) )
125 121 85 86 divcld ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( √ ‘ 𝐷 ) / 𝐵 ) ∈ ℂ )
126 90 125 jca ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) / 𝐵 ) ∈ ℂ ) )
127 sqeqor ( ( 𝑋 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) / 𝐵 ) ∈ ℂ ) → ( ( 𝑋 ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) / 𝐵 ) ↑ 2 ) ↔ ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
128 126 127 syl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑋 ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) / 𝐵 ) ↑ 2 ) ↔ ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
129 orcom ( ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ↔ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) )
130 129 a1i ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ↔ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
131 124 128 130 3bitrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑋 ↑ 2 ) = ( 𝐷 / ( 𝐵 ↑ 2 ) ) ↔ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
132 131 biimpd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑋 ↑ 2 ) = ( 𝐷 / ( 𝐵 ↑ 2 ) ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
133 115 132 syl5bi ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐷 / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
134 114 133 syl5bir ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
135 112 134 sylbid ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) / ( 𝐵 ↑ 2 ) ) = ( 𝑋 ↑ 2 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
136 103 135 sylbid ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑅 ↑ 2 ) − ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑋 ↑ 2 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
137 92 136 sylbird ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑋 ↑ 2 ) + ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
138 137 com12 ( ( ( 𝑋 ↑ 2 ) + ( ( 𝐶 / 𝐵 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
139 82 138 syl6bi ( 𝑌 = ( 𝐶 / 𝐵 ) → ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) )
140 139 com13 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) → ( 𝑌 = ( 𝐶 / 𝐵 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) )
141 140 adantrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( 𝐶 / 𝐵 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) )
142 141 imp ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( 𝐶 / 𝐵 ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
143 142 ancld ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( 𝐶 / 𝐵 ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ∧ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) )
144 79 143 syld ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ∧ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) )
145 7 144 mpd ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ∧ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) )
146 145 ex ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ∧ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) )