| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
| 2 |
|
itscnhlc0yqe.t |
⊢ 𝑇 = - ( 2 · ( 𝐵 · 𝐶 ) ) |
| 3 |
|
itscnhlc0yqe.u |
⊢ 𝑈 = ( ( 𝐶 ↑ 2 ) − ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) |
| 4 |
|
itsclc0yqsollem1.d |
⊢ 𝐷 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) |
| 5 |
2
|
oveq1i |
⊢ ( 𝑇 ↑ 2 ) = ( - ( 2 · ( 𝐵 · 𝐶 ) ) ↑ 2 ) |
| 6 |
|
2cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 2 ∈ ℂ ) |
| 7 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 8 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
| 9 |
7 8
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 10 |
6 9
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 2 · ( 𝐵 · 𝐶 ) ) ∈ ℂ ) |
| 11 |
|
sqneg |
⊢ ( ( 2 · ( 𝐵 · 𝐶 ) ) ∈ ℂ → ( - ( 2 · ( 𝐵 · 𝐶 ) ) ↑ 2 ) = ( ( 2 · ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( - ( 2 · ( 𝐵 · 𝐶 ) ) ↑ 2 ) = ( ( 2 · ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) |
| 13 |
6 9
|
sqmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 2 · ( 𝐵 · 𝐶 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝐵 · 𝐶 ) ↑ 2 ) ) ) |
| 14 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 15 |
14
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 2 ↑ 2 ) = 4 ) |
| 16 |
7 8
|
sqmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐵 · 𝐶 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) |
| 17 |
15 16
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 2 ↑ 2 ) · ( ( 𝐵 · 𝐶 ) ↑ 2 ) ) = ( 4 · ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 18 |
12 13 17
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( - ( 2 · ( 𝐵 · 𝐶 ) ) ↑ 2 ) = ( 4 · ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 19 |
5 18
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝑇 ↑ 2 ) = ( 4 · ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 20 |
1 3
|
oveq12i |
⊢ ( 𝑄 · 𝑈 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) |
| 21 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 22 |
21
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 23 |
7
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 24 |
22 23
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 25 |
8
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝑅 ∈ ℂ ) |
| 27 |
26
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
| 28 |
22 27
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) |
| 29 |
24 25 28
|
subdid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) |
| 30 |
22 23 25
|
adddird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝐶 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 31 |
22 23 28
|
adddird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐵 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) |
| 32 |
30 31
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐵 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) |
| 33 |
23 25
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 34 |
22 25
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 35 |
22 28
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ∈ ℂ ) |
| 36 |
23 27
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) |
| 37 |
22 36
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ∈ ℂ ) |
| 38 |
35 37
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 39 |
34 33
|
addcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) = ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 40 |
23 22 27
|
mul12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐵 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐵 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) |
| 42 |
39 41
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐵 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) = ( ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) |
| 43 |
33 34 38 42
|
assraddsubd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐵 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 44 |
29 32 43
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 45 |
20 44
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝑄 · 𝑈 ) = ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 4 · ( 𝑄 · 𝑈 ) ) = ( 4 · ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) |
| 47 |
19 46
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝑇 ↑ 2 ) − ( 4 · ( 𝑄 · 𝑈 ) ) ) = ( ( 4 · ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) ) |
| 48 |
|
4cn |
⊢ 4 ∈ ℂ |
| 49 |
48
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 4 ∈ ℂ ) |
| 50 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 51 |
50
|
sqcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 53 |
1 24
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝑄 ∈ ℂ ) |
| 54 |
27 53
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) ∈ ℂ ) |
| 55 |
54 25
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 56 |
4 55
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝐷 ∈ ℂ ) |
| 57 |
49 52 56
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 4 · ( 𝐴 ↑ 2 ) ) · 𝐷 ) = ( 4 · ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) ) |
| 58 |
34 38
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
| 59 |
33 33 58
|
subsub4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) |
| 60 |
33
|
subidd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) = 0 ) |
| 61 |
60
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) = ( 0 − ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 62 |
|
0cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 0 ∈ ℂ ) |
| 63 |
62 34 38
|
subsub2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 0 − ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) = ( 0 + ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) ) |
| 64 |
38 34
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ∈ ℂ ) |
| 65 |
64
|
addlidd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 0 + ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 66 |
61 63 65
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 67 |
59 66
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 68 |
22 28 36
|
adddid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) |
| 69 |
22 23 27
|
adddird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) |
| 70 |
69
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ) |
| 71 |
70
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ) ) |
| 72 |
68 71
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ) ) |
| 73 |
72
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 74 |
24 27
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) |
| 75 |
22 74 25
|
subdid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 76 |
73 75
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) ) ) |
| 77 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 78 |
77
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) = ( ( 𝑅 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 79 |
27 24
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝑅 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ) |
| 80 |
78 79
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) ) |
| 82 |
4 81
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → 𝐷 = ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) ) |
| 83 |
82
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) = 𝐷 ) |
| 84 |
83
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) − ( 𝐶 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) |
| 85 |
67 76 84
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 4 · ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) = ( 4 · ( ( 𝐴 ↑ 2 ) · 𝐷 ) ) ) |
| 87 |
33 58
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ∈ ℂ ) |
| 88 |
49 33 87
|
subdid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( 4 · ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) = ( ( 4 · ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) ) |
| 89 |
57 86 88
|
3eqtr2rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 4 · ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐵 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐴 ↑ 2 ) · ( ( 𝐵 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) = ( ( 4 · ( 𝐴 ↑ 2 ) ) · 𝐷 ) ) |
| 90 |
47 89
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝑇 ↑ 2 ) − ( 4 · ( 𝑄 · 𝑈 ) ) ) = ( ( 4 · ( 𝐴 ↑ 2 ) ) · 𝐷 ) ) |