| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
| 2 |
|
itscnhlc0yqe.t |
⊢ 𝑇 = - ( 2 · ( 𝐵 · 𝐶 ) ) |
| 3 |
|
itscnhlc0yqe.u |
⊢ 𝑈 = ( ( 𝐶 ↑ 2 ) − ( ( 𝐴 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) |
| 4 |
|
itsclc0yqsollem1.d |
⊢ 𝐷 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) |
| 5 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 6 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 7 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
| 8 |
5 6 7
|
3anim123i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 9 |
|
recn |
⊢ ( 𝑅 ∈ ℝ → 𝑅 ∈ ℂ ) |
| 10 |
8 9
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) ) |
| 12 |
1 2 3 4
|
itsclc0yqsollem1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ 𝑅 ∈ ℂ ) → ( ( 𝑇 ↑ 2 ) − ( 4 · ( 𝑄 · 𝑈 ) ) ) = ( ( 4 · ( 𝐴 ↑ 2 ) ) · 𝐷 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( ( 𝑇 ↑ 2 ) − ( 4 · ( 𝑄 · 𝑈 ) ) ) = ( ( 4 · ( 𝐴 ↑ 2 ) ) · 𝐷 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( √ ‘ ( ( 𝑇 ↑ 2 ) − ( 4 · ( 𝑄 · 𝑈 ) ) ) ) = ( √ ‘ ( ( 4 · ( 𝐴 ↑ 2 ) ) · 𝐷 ) ) ) |
| 15 |
|
4re |
⊢ 4 ∈ ℝ |
| 16 |
15
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 4 ∈ ℝ ) |
| 17 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 18 |
17
|
resqcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 20 |
16 19
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( 4 · ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 21 |
|
0re |
⊢ 0 ∈ ℝ |
| 22 |
|
4pos |
⊢ 0 < 4 |
| 23 |
21 15 22
|
ltleii |
⊢ 0 ≤ 4 |
| 24 |
23
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 0 ≤ 4 ) |
| 25 |
17
|
sqge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 27 |
16 19 24 26
|
mulge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 0 ≤ ( 4 · ( 𝐴 ↑ 2 ) ) ) |
| 28 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 𝑅 ∈ ℝ ) |
| 29 |
28
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
| 30 |
1
|
resum2sqcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ ) |
| 31 |
30
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝑄 ∈ ℝ ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 𝑄 ∈ ℝ ) |
| 33 |
29 32
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) ∈ ℝ ) |
| 34 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 35 |
34
|
resqcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ↑ 2 ) ∈ ℝ ) |
| 36 |
35
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( 𝐶 ↑ 2 ) ∈ ℝ ) |
| 37 |
33 36
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) ∈ ℝ ) |
| 38 |
4 37
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 𝐷 ∈ ℝ ) |
| 39 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → 0 ≤ 𝐷 ) |
| 40 |
20 27 38 39
|
sqrtmuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( √ ‘ ( ( 4 · ( 𝐴 ↑ 2 ) ) · 𝐷 ) ) = ( ( √ ‘ ( 4 · ( 𝐴 ↑ 2 ) ) ) · ( √ ‘ 𝐷 ) ) ) |
| 41 |
15 23
|
pm3.2i |
⊢ ( 4 ∈ ℝ ∧ 0 ≤ 4 ) |
| 42 |
41
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 4 ∈ ℝ ∧ 0 ≤ 4 ) ) |
| 43 |
|
resqcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 44 |
|
sqge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 45 |
|
sqrtmul |
⊢ ( ( ( 4 ∈ ℝ ∧ 0 ≤ 4 ) ∧ ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ) → ( √ ‘ ( 4 · ( 𝐴 ↑ 2 ) ) ) = ( ( √ ‘ 4 ) · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) |
| 46 |
42 43 44 45
|
syl12anc |
⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( 4 · ( 𝐴 ↑ 2 ) ) ) = ( ( √ ‘ 4 ) · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( √ ‘ ( 4 · ( 𝐴 ↑ 2 ) ) ) = ( ( √ ‘ 4 ) · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( √ ‘ ( 4 · ( 𝐴 ↑ 2 ) ) ) = ( ( √ ‘ 4 ) · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) |
| 49 |
|
sqrt4 |
⊢ ( √ ‘ 4 ) = 2 |
| 50 |
49
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( √ ‘ 4 ) = 2 ) |
| 51 |
|
absre |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ↑ 2 ) ) ) |
| 52 |
51
|
eqcomd |
⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( abs ‘ 𝐴 ) ) |
| 53 |
52
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( abs ‘ 𝐴 ) ) |
| 54 |
53
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( abs ‘ 𝐴 ) ) |
| 55 |
50 54
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 4 ) · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
| 56 |
48 55
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( √ ‘ ( 4 · ( 𝐴 ↑ 2 ) ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
| 57 |
56
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ ( 4 · ( 𝐴 ↑ 2 ) ) ) · ( √ ‘ 𝐷 ) ) = ( ( 2 · ( abs ‘ 𝐴 ) ) · ( √ ‘ 𝐷 ) ) ) |
| 58 |
14 40 57
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷 ) → ( √ ‘ ( ( 𝑇 ↑ 2 ) − ( 4 · ( 𝑄 · 𝑈 ) ) ) ) = ( ( 2 · ( abs ‘ 𝐴 ) ) · ( √ ‘ 𝐷 ) ) ) |