| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2itscp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
2itscp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
2itscp.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 4 |
|
2itscp.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 5 |
|
2itscp.d |
⊢ 𝐷 = ( 𝑋 − 𝐴 ) |
| 6 |
|
2itscp.e |
⊢ 𝐸 = ( 𝐵 − 𝑌 ) |
| 7 |
|
2itscp.c |
⊢ 𝐶 = ( ( 𝐷 · 𝐵 ) + ( 𝐸 · 𝐴 ) ) |
| 8 |
|
2itscp.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 9 |
|
2itscp.l |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) |
| 10 |
|
itscnhlinecirc02plem1.n |
⊢ ( 𝜑 → 𝐵 ≠ 𝑌 ) |
| 11 |
|
4re |
⊢ 4 ∈ ℝ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 13 |
3 1
|
resubcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ∈ ℝ ) |
| 14 |
5 13
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 15 |
14
|
resqcld |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℝ ) |
| 16 |
14 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐵 ) ∈ ℝ ) |
| 17 |
2 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑌 ) ∈ ℝ ) |
| 18 |
6 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 19 |
18 1
|
remulcld |
⊢ ( 𝜑 → ( 𝐸 · 𝐴 ) ∈ ℝ ) |
| 20 |
16 19
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐵 ) + ( 𝐸 · 𝐴 ) ) ∈ ℝ ) |
| 21 |
7 20
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 22 |
21
|
resqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℝ ) |
| 23 |
15 22
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ∈ ℝ ) |
| 24 |
18
|
resqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 25 |
24 15
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℝ ) |
| 26 |
8
|
resqcld |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
| 27 |
24 26
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℝ ) |
| 28 |
22 27
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ∈ ℝ ) |
| 29 |
25 28
|
remulcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ∈ ℝ ) |
| 30 |
23 29
|
resubcld |
⊢ ( 𝜑 → ( ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ∈ ℝ ) |
| 31 |
|
4pos |
⊢ 0 < 4 |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 0 < 4 ) |
| 33 |
15 26
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℝ ) |
| 34 |
27 33
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ∈ ℝ ) |
| 35 |
34 22
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) ∈ ℝ ) |
| 36 |
6
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝐵 − 𝑌 ) ) |
| 37 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 38 |
4
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 39 |
37 38 10
|
subne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝑌 ) ≠ 0 ) |
| 40 |
36 39
|
eqnetrd |
⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
| 41 |
18 40
|
sqgt0d |
⊢ ( 𝜑 → 0 < ( 𝐸 ↑ 2 ) ) |
| 42 |
10
|
orcd |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋 ) ) |
| 43 |
|
eqid |
⊢ ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) |
| 44 |
|
eqid |
⊢ ( ( ( 𝑅 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) = ( ( ( 𝑅 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) |
| 45 |
1 2 3 4 5 6 7 8 9 42 43 44
|
2itscp |
⊢ ( 𝜑 → 0 < ( ( ( 𝑅 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) ) |
| 46 |
24
|
recnd |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 47 |
15
|
recnd |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 48 |
26
|
recnd |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
| 49 |
46 47 48
|
adddird |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) = ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) |
| 50 |
46 47
|
addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 51 |
50 48
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( 𝑅 ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 52 |
49 51
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) = ( ( 𝑅 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) = ( ( ( 𝑅 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) ) |
| 54 |
45 53
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) ) |
| 55 |
24 35 41 54
|
mulgt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐸 ↑ 2 ) · ( ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) ) ) |
| 56 |
47 46 48
|
mul12d |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) = ( ( 𝐸 ↑ 2 ) · ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐸 ↑ 2 ) · ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) |
| 58 |
46 48
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) |
| 59 |
47 48
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) |
| 60 |
46 58 59
|
adddid |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐸 ↑ 2 ) · ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) |
| 61 |
57 60
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) = ( ( 𝐸 ↑ 2 ) · ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) |
| 62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐸 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) = ( ( ( 𝐸 ↑ 2 ) · ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐸 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 63 |
58 59
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ∈ ℂ ) |
| 64 |
22
|
recnd |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 65 |
46 63 64
|
subdid |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) ) = ( ( ( 𝐸 ↑ 2 ) · ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐸 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 66 |
62 65
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐸 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) = ( ( 𝐸 ↑ 2 ) · ( ( ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) − ( 𝐶 ↑ 2 ) ) ) ) |
| 67 |
55 66
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐸 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 68 |
18
|
recnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 69 |
68
|
sqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 70 |
14
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 71 |
70
|
sqcld |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 72 |
27
|
recnd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) |
| 73 |
|
mulsubaddmulsub |
⊢ ( ( ( ( 𝐸 ↑ 2 ) ∈ ℂ ∧ ( 𝐷 ↑ 2 ) ∈ ℂ ) ∧ ( ( 𝐶 ↑ 2 ) ∈ ℂ ∧ ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) ) → ( ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) = ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐸 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 74 |
69 71 64 72 73
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) = ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) − ( ( 𝐸 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 75 |
67 74
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) |
| 76 |
12 30 32 75
|
mulgt0d |
⊢ ( 𝜑 → 0 < ( 4 · ( ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 77 |
|
4cn |
⊢ 4 ∈ ℂ |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
| 79 |
21
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 80 |
79
|
sqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 81 |
71 80
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 82 |
69 71
|
addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℂ ) |
| 83 |
8
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 84 |
83
|
sqcld |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
| 85 |
69 84
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ∈ ℂ ) |
| 86 |
80 85
|
subcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ∈ ℂ ) |
| 87 |
82 86
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 88 |
78 81 87
|
subdid |
⊢ ( 𝜑 → ( 4 · ( ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) − ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) = ( ( 4 · ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 89 |
76 88
|
breqtrd |
⊢ ( 𝜑 → 0 < ( ( 4 · ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 90 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 91 |
70 79
|
mulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐶 ) ∈ ℂ ) |
| 92 |
90 91
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( 𝐷 · 𝐶 ) ) ∈ ℂ ) |
| 93 |
|
sqneg |
⊢ ( ( 2 · ( 𝐷 · 𝐶 ) ) ∈ ℂ → ( - ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) = ( ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) ) |
| 94 |
92 93
|
syl |
⊢ ( 𝜑 → ( - ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) = ( ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) ) |
| 95 |
90 91
|
sqmuld |
⊢ ( 𝜑 → ( ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝐷 · 𝐶 ) ↑ 2 ) ) ) |
| 96 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 97 |
96
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 2 ) = 4 ) |
| 98 |
70 79
|
sqmuld |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐶 ) ↑ 2 ) = ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) |
| 99 |
97 98
|
oveq12d |
⊢ ( 𝜑 → ( ( 2 ↑ 2 ) · ( ( 𝐷 · 𝐶 ) ↑ 2 ) ) = ( 4 · ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 100 |
94 95 99
|
3eqtrd |
⊢ ( 𝜑 → ( - ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) = ( 4 · ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) − ( 4 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) = ( ( 4 · ( ( 𝐷 ↑ 2 ) · ( 𝐶 ↑ 2 ) ) ) − ( 4 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
| 102 |
89 101
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( ( - ( 2 · ( 𝐷 · 𝐶 ) ) ↑ 2 ) − ( 4 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) − ( ( 𝐸 ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |