Metamath Proof Explorer


Theorem itunifn

Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝑥 ) ↾ ω ) )
Assertion itunifn ( 𝐴𝑉 → ( 𝑈𝐴 ) Fn ω )

Proof

Step Hyp Ref Expression
1 ituni.u 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝑥 ) ↾ ω ) )
2 frfnom ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) Fn ω
3 1 itunifval ( 𝐴𝑉 → ( 𝑈𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) )
4 3 fneq1d ( 𝐴𝑉 → ( ( 𝑈𝐴 ) Fn ω ↔ ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) Fn ω ) )
5 2 4 mpbiri ( 𝐴𝑉 → ( 𝑈𝐴 ) Fn ω )