Metamath Proof Explorer


Theorem itunifval

Description: Function value of iterated unions.EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could conceivably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝑥 ) ↾ ω ) )
Assertion itunifval ( 𝐴𝑉 → ( 𝑈𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) )

Proof

Step Hyp Ref Expression
1 ituni.u 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝑥 ) ↾ ω ) )
2 elex ( 𝐴𝑉𝐴 ∈ V )
3 rdgeq2 ( 𝑥 = 𝐴 → rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝑥 ) = rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) )
4 3 reseq1d ( 𝑥 = 𝐴 → ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝑥 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) )
5 rdgfun Fun rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 )
6 omex ω ∈ V
7 resfunexg ( ( Fun rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ∧ ω ∈ V ) → ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) ∈ V )
8 5 6 7 mp2an ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) ∈ V
9 4 1 8 fvmpt ( 𝐴 ∈ V → ( 𝑈𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) )
10 2 9 syl ( 𝐴𝑉 → ( 𝑈𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ 𝑦 ) , 𝐴 ) ↾ ω ) )