Step |
Hyp |
Ref |
Expression |
1 |
|
ituni.u |
⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) |
2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
3 |
|
rdgeq2 |
⊢ ( 𝑥 = 𝐴 → rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) = rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ) |
4 |
3
|
reseq1d |
⊢ ( 𝑥 = 𝐴 → ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) ) |
5 |
|
rdgfun |
⊢ Fun rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) |
6 |
|
omex |
⊢ ω ∈ V |
7 |
|
resfunexg |
⊢ ( ( Fun rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ∧ ω ∈ V ) → ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) ∈ V ) |
8 |
5 6 7
|
mp2an |
⊢ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) ∈ V |
9 |
4 1 8
|
fvmpt |
⊢ ( 𝐴 ∈ V → ( 𝑈 ‘ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) ) |
10 |
2 9
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ‘ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) ) |