Metamath Proof Explorer


Theorem iun0

Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iun0 𝑥𝐴 ∅ = ∅

Proof

Step Hyp Ref Expression
1 noel ¬ 𝑦 ∈ ∅
2 1 a1i ( 𝑥𝐴 → ¬ 𝑦 ∈ ∅ )
3 2 nrex ¬ ∃ 𝑥𝐴 𝑦 ∈ ∅
4 eliun ( 𝑦 𝑥𝐴 ∅ ↔ ∃ 𝑥𝐴 𝑦 ∈ ∅ )
5 3 4 mtbir ¬ 𝑦 𝑥𝐴
6 5 nel0 𝑥𝐴 ∅ = ∅