Metamath Proof Explorer


Theorem iuncom

Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008)

Ref Expression
Assertion iuncom 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶

Proof

Step Hyp Ref Expression
1 rexcom ( ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 ↔ ∃ 𝑦𝐵𝑥𝐴 𝑧𝐶 )
2 eliun ( 𝑧 𝑦𝐵 𝐶 ↔ ∃ 𝑦𝐵 𝑧𝐶 )
3 2 rexbii ( ∃ 𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 )
4 eliun ( 𝑧 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑧𝐶 )
5 4 rexbii ( ∃ 𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∃ 𝑦𝐵𝑥𝐴 𝑧𝐶 )
6 1 3 5 3bitr4i ( ∃ 𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃ 𝑦𝐵 𝑧 𝑥𝐴 𝐶 )
7 eliun ( 𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃ 𝑥𝐴 𝑧 𝑦𝐵 𝐶 )
8 eliun ( 𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∃ 𝑦𝐵 𝑧 𝑥𝐴 𝐶 )
9 6 7 8 3bitr4i ( 𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶 )
10 9 eqriv 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶