Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → 𝐴 ≼ ω ) |
3 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → 𝐴 ∈ V ) |
5 |
|
ovex |
⊢ ( ω ↑m 𝐵 ) ∈ V |
6 |
5
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V |
7 |
|
iunexg |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) |
8 |
4 6 7
|
sylancl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) |
9 |
|
acncc |
⊢ AC ω = V |
10 |
8 9
|
eleqtrrdi |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC ω ) |
11 |
|
acndom |
⊢ ( 𝐴 ≼ ω → ( ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 ) ) |
12 |
2 10 11
|
sylc |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 ) |
13 |
|
simpr |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |
14 |
|
omex |
⊢ ω ∈ V |
15 |
|
xpdom1g |
⊢ ( ( ω ∈ V ∧ 𝐴 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) ) |
16 |
14 2 15
|
sylancr |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) ) |
17 |
|
xpomen |
⊢ ( ω × ω ) ≈ ω |
18 |
|
domentr |
⊢ ( ( ( 𝐴 × ω ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝐴 × ω ) ≼ ω ) |
19 |
16 17 18
|
sylancl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ω ) |
20 |
|
ctex |
⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) |
21 |
20
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
22 |
|
iunexg |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
23 |
3 21 22
|
syl2an |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
24 |
|
omelon |
⊢ ω ∈ On |
25 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
26 |
24 25
|
ax-mp |
⊢ ω ∈ dom card |
27 |
|
numacn |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
28 |
23 26 27
|
mpisyl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
29 |
|
acndom2 |
⊢ ( ( 𝐴 × ω ) ≼ ω → ( ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝐴 × ω ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
30 |
19 28 29
|
sylc |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
31 |
1 12 13 30
|
iundomg |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × ω ) ) |
32 |
|
domtr |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × ω ) ∧ ( 𝐴 × ω ) ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |
33 |
31 19 32
|
syl2anc |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |