| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → 𝐴 ≼ ω ) |
| 3 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → 𝐴 ∈ V ) |
| 5 |
|
ovex |
⊢ ( ω ↑m 𝐵 ) ∈ V |
| 6 |
5
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V |
| 7 |
|
iunexg |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) |
| 8 |
4 6 7
|
sylancl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) |
| 9 |
|
acncc |
⊢ AC ω = V |
| 10 |
8 9
|
eleqtrrdi |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC ω ) |
| 11 |
|
acndom |
⊢ ( 𝐴 ≼ ω → ( ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 ) ) |
| 12 |
2 10 11
|
sylc |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 ) |
| 13 |
|
simpr |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |
| 14 |
|
omex |
⊢ ω ∈ V |
| 15 |
|
xpdom1g |
⊢ ( ( ω ∈ V ∧ 𝐴 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) ) |
| 16 |
14 2 15
|
sylancr |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) ) |
| 17 |
|
xpomen |
⊢ ( ω × ω ) ≈ ω |
| 18 |
|
domentr |
⊢ ( ( ( 𝐴 × ω ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝐴 × ω ) ≼ ω ) |
| 19 |
16 17 18
|
sylancl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ω ) |
| 20 |
|
ctex |
⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) |
| 21 |
20
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 22 |
|
iunexg |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 23 |
3 21 22
|
syl2an |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 24 |
|
omelon |
⊢ ω ∈ On |
| 25 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
| 26 |
24 25
|
ax-mp |
⊢ ω ∈ dom card |
| 27 |
|
numacn |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 28 |
23 26 27
|
mpisyl |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 29 |
|
acndom2 |
⊢ ( ( 𝐴 × ω ) ≼ ω → ( ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝐴 × ω ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 30 |
19 28 29
|
sylc |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 31 |
1 12 13 30
|
iundomg |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × ω ) ) |
| 32 |
|
domtr |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × ω ) ∧ ( 𝐴 × ω ) ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |
| 33 |
31 19 32
|
syl2anc |
⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |