Metamath Proof Explorer


Theorem iundif2

Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in Enderton p. 31. Use intiin to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004)

Ref Expression
Assertion iundif2 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 eldif ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
2 1 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
3 r19.42v ( ∃ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑥𝐴 ¬ 𝑦𝐶 ) )
4 rexnal ( ∃ 𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∀ 𝑥𝐴 𝑦𝐶 )
5 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 ) )
6 5 elv ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 )
7 4 6 xchbinxr ( ∃ 𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶 )
8 7 anbi2i ( ( 𝑦𝐵 ∧ ∃ 𝑥𝐴 ¬ 𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) )
9 2 3 8 3bitri ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) )
10 eliun ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
11 eldif ( 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) )
12 9 10 11 3bitr4i ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) )
13 12 eqriv 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 )