Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
3 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ) |
4 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
5 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
6 |
5
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
7 |
4 6
|
xchbinxr |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
9 |
2 3 8
|
3bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
10 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
11 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
12 |
9 10 11
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
13 |
12
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) |