Step |
Hyp |
Ref |
Expression |
1 |
|
iundifdif.o |
⊢ 𝑂 ∈ V |
2 |
|
iundifdif.2 |
⊢ 𝐴 ⊆ 𝒫 𝑂 |
3 |
|
iundif2 |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥 ) |
4 |
|
intiin |
⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
5 |
4
|
difeq2i |
⊢ ( 𝑂 ∖ ∩ 𝐴 ) = ( 𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥 ) |
6 |
3 5
|
eqtr4i |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) = ( 𝑂 ∖ ∩ 𝐴 ) |
7 |
6
|
difeq2i |
⊢ ( 𝑂 ∖ ∪ 𝑥 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ) = ( 𝑂 ∖ ( 𝑂 ∖ ∩ 𝐴 ) ) |
8 |
2
|
jctl |
⊢ ( 𝐴 ≠ ∅ → ( 𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅ ) ) |
9 |
|
intssuni2 |
⊢ ( ( 𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ⊆ ∪ 𝒫 𝑂 ) |
10 |
|
unipw |
⊢ ∪ 𝒫 𝑂 = 𝑂 |
11 |
10
|
sseq2i |
⊢ ( ∩ 𝐴 ⊆ ∪ 𝒫 𝑂 ↔ ∩ 𝐴 ⊆ 𝑂 ) |
12 |
11
|
biimpi |
⊢ ( ∩ 𝐴 ⊆ ∪ 𝒫 𝑂 → ∩ 𝐴 ⊆ 𝑂 ) |
13 |
8 9 12
|
3syl |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑂 ) |
14 |
|
dfss4 |
⊢ ( ∩ 𝐴 ⊆ 𝑂 ↔ ( 𝑂 ∖ ( 𝑂 ∖ ∩ 𝐴 ) ) = ∩ 𝐴 ) |
15 |
13 14
|
sylib |
⊢ ( 𝐴 ≠ ∅ → ( 𝑂 ∖ ( 𝑂 ∖ ∩ 𝐴 ) ) = ∩ 𝐴 ) |
16 |
7 15
|
eqtr2id |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 = ( 𝑂 ∖ ∪ 𝑥 ∈ 𝐴 ( 𝑂 ∖ 𝑥 ) ) ) |