| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iundifdif.o | 
							⊢ 𝑂  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							iundifdif.2 | 
							⊢ 𝐴  ⊆  𝒫  𝑂  | 
						
						
							| 3 | 
							
								
							 | 
							iundif2 | 
							⊢ ∪  𝑥  ∈  𝐴 ( 𝑂  ∖  𝑥 )  =  ( 𝑂  ∖  ∩  𝑥  ∈  𝐴 𝑥 )  | 
						
						
							| 4 | 
							
								
							 | 
							intiin | 
							⊢ ∩  𝐴  =  ∩  𝑥  ∈  𝐴 𝑥  | 
						
						
							| 5 | 
							
								4
							 | 
							difeq2i | 
							⊢ ( 𝑂  ∖  ∩  𝐴 )  =  ( 𝑂  ∖  ∩  𝑥  ∈  𝐴 𝑥 )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							eqtr4i | 
							⊢ ∪  𝑥  ∈  𝐴 ( 𝑂  ∖  𝑥 )  =  ( 𝑂  ∖  ∩  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							difeq2i | 
							⊢ ( 𝑂  ∖  ∪  𝑥  ∈  𝐴 ( 𝑂  ∖  𝑥 ) )  =  ( 𝑂  ∖  ( 𝑂  ∖  ∩  𝐴 ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							jctl | 
							⊢ ( 𝐴  ≠  ∅  →  ( 𝐴  ⊆  𝒫  𝑂  ∧  𝐴  ≠  ∅ ) )  | 
						
						
							| 9 | 
							
								
							 | 
							intssuni2 | 
							⊢ ( ( 𝐴  ⊆  𝒫  𝑂  ∧  𝐴  ≠  ∅ )  →  ∩  𝐴  ⊆  ∪  𝒫  𝑂 )  | 
						
						
							| 10 | 
							
								
							 | 
							unipw | 
							⊢ ∪  𝒫  𝑂  =  𝑂  | 
						
						
							| 11 | 
							
								10
							 | 
							sseq2i | 
							⊢ ( ∩  𝐴  ⊆  ∪  𝒫  𝑂  ↔  ∩  𝐴  ⊆  𝑂 )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpi | 
							⊢ ( ∩  𝐴  ⊆  ∪  𝒫  𝑂  →  ∩  𝐴  ⊆  𝑂 )  | 
						
						
							| 13 | 
							
								8 9 12
							 | 
							3syl | 
							⊢ ( 𝐴  ≠  ∅  →  ∩  𝐴  ⊆  𝑂 )  | 
						
						
							| 14 | 
							
								
							 | 
							dfss4 | 
							⊢ ( ∩  𝐴  ⊆  𝑂  ↔  ( 𝑂  ∖  ( 𝑂  ∖  ∩  𝐴 ) )  =  ∩  𝐴 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylib | 
							⊢ ( 𝐴  ≠  ∅  →  ( 𝑂  ∖  ( 𝑂  ∖  ∩  𝐴 ) )  =  ∩  𝐴 )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							eqtr2id | 
							⊢ ( 𝐴  ≠  ∅  →  ∩  𝐴  =  ( 𝑂  ∖  ∪  𝑥  ∈  𝐴 ( 𝑂  ∖  𝑥 ) ) )  |