Metamath Proof Explorer


Theorem iundifdifd

Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016)

Ref Expression
Assertion iundifdifd ( 𝐴 ⊆ 𝒫 𝑂 → ( 𝐴 ≠ ∅ → 𝐴 = ( 𝑂 𝑥𝐴 ( 𝑂𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 iundif2 𝑥𝐴 ( 𝑂𝑥 ) = ( 𝑂 𝑥𝐴 𝑥 )
2 intiin 𝐴 = 𝑥𝐴 𝑥
3 2 difeq2i ( 𝑂 𝐴 ) = ( 𝑂 𝑥𝐴 𝑥 )
4 1 3 eqtr4i 𝑥𝐴 ( 𝑂𝑥 ) = ( 𝑂 𝐴 )
5 4 difeq2i ( 𝑂 𝑥𝐴 ( 𝑂𝑥 ) ) = ( 𝑂 ∖ ( 𝑂 𝐴 ) )
6 intssuni2 ( ( 𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅ ) → 𝐴 𝒫 𝑂 )
7 unipw 𝒫 𝑂 = 𝑂
8 6 7 sseqtrdi ( ( 𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅ ) → 𝐴𝑂 )
9 dfss4 ( 𝐴𝑂 ↔ ( 𝑂 ∖ ( 𝑂 𝐴 ) ) = 𝐴 )
10 8 9 sylib ( ( 𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅ ) → ( 𝑂 ∖ ( 𝑂 𝐴 ) ) = 𝐴 )
11 5 10 eqtr2id ( ( 𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅ ) → 𝐴 = ( 𝑂 𝑥𝐴 ( 𝑂𝑥 ) ) )
12 11 ex ( 𝐴 ⊆ 𝒫 𝑂 → ( 𝐴 ≠ ∅ → 𝐴 = ( 𝑂 𝑥𝐴 ( 𝑂𝑥 ) ) ) )