| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundisj.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
| 2 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ℕ |
| 3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 4 |
2 3
|
sseqtri |
⊢ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) |
| 5 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ) |
| 6 |
5
|
biimpri |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ) |
| 7 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) |
| 8 |
4 6 7
|
sylancr |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) |
| 9 |
|
nfrab1 |
⊢ Ⅎ 𝑛 { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
| 12 |
9 10 11
|
nfinf |
⊢ Ⅎ 𝑛 inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑛 ℕ |
| 14 |
12
|
nfcsb1 |
⊢ Ⅎ 𝑛 ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 |
| 15 |
14
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 |
| 16 |
|
csbeq1a |
⊢ ( 𝑛 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → 𝐴 = ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
| 17 |
16
|
eleq2d |
⊢ ( 𝑛 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
| 18 |
12 13 15 17
|
elrabf |
⊢ ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ↔ ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ∧ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
| 19 |
8 18
|
sylib |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ∧ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
| 20 |
19
|
simpld |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ) |
| 21 |
19
|
simprd |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
| 22 |
20
|
nnred |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 23 |
22
|
ltnrd |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ¬ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 24 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ↔ ∃ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝑥 ∈ 𝐵 ) |
| 25 |
22
|
ad2antrr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 26 |
|
elfzouz |
⊢ ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 27 |
26 3
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → 𝑘 ∈ ℕ ) |
| 28 |
27
|
ad2antlr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ℕ ) |
| 29 |
28
|
nnred |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ℝ ) |
| 30 |
1
|
eleq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 31 |
|
simpr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 32 |
30 28 31
|
elrabd |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) |
| 33 |
|
infssuzle |
⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ≤ 𝑘 ) |
| 34 |
4 32 33
|
sylancr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ≤ 𝑘 ) |
| 35 |
|
elfzolt2 |
⊢ ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → 𝑘 < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 36 |
35
|
ad2antlr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 37 |
25 29 25 34 36
|
lelttrd |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 38 |
37
|
rexlimdva2 |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ( ∃ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝑥 ∈ 𝐵 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 39 |
24 38
|
biimtrid |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 40 |
23 39
|
mtod |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) |
| 41 |
21 40
|
eldifd |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) |
| 42 |
|
csbeq1 |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
| 43 |
|
oveq2 |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 1 ..^ 𝑚 ) = ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 44 |
43
|
iuneq1d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) |
| 45 |
42 44
|
difeq12d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) = ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) |
| 46 |
45
|
eleq2d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ↔ 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) ) |
| 47 |
46
|
rspcev |
⊢ ( ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ∧ 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 48 |
20 41 47
|
syl2anc |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 49 |
|
nfv |
⊢ Ⅎ 𝑚 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
| 50 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 |
| 52 |
50 51
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
| 53 |
52
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
| 54 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 55 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑚 ) ) |
| 56 |
55
|
iuneq1d |
⊢ ( 𝑛 = 𝑚 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
| 57 |
54 56
|
difeq12d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 58 |
57
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) ) |
| 59 |
49 53 58
|
cbvrexw |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
| 60 |
48 59
|
sylibr |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 61 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 62 |
61
|
reximi |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) → ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ) |
| 63 |
60 62
|
impbii |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 64 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ 𝐴 ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ) |
| 65 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 66 |
63 64 65
|
3bitr4i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ 𝐴 ↔ 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 67 |
66
|
eqriv |
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |