| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iundisj.1 | ⊢ ( 𝑛  =  𝑘  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | tru | ⊢ ⊤ | 
						
							| 3 |  | eqeq12 | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( 𝑎  =  𝑏  ↔  𝑥  =  𝑦 ) ) | 
						
							| 4 |  | csbeq1 | ⊢ ( 𝑎  =  𝑥  →  ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) | 
						
							| 5 |  | csbeq1 | ⊢ ( 𝑏  =  𝑦  →  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) | 
						
							| 6 | 4 5 | ineqan12d | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅  ↔  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 8 | 3 7 | orbi12d | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ( 𝑎  =  𝑏  ∨  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  ↔  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) ) | 
						
							| 9 |  | eqeq12 | ⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( 𝑎  =  𝑏  ↔  𝑦  =  𝑥 ) ) | 
						
							| 10 |  | equcom | ⊢ ( 𝑦  =  𝑥  ↔  𝑥  =  𝑦 ) | 
						
							| 11 | 9 10 | bitrdi | ⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( 𝑎  =  𝑏  ↔  𝑥  =  𝑦 ) ) | 
						
							| 12 |  | csbeq1 | ⊢ ( 𝑎  =  𝑦  →  ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) | 
						
							| 13 |  | csbeq1 | ⊢ ( 𝑏  =  𝑥  →  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) | 
						
							| 14 | 12 13 | ineqan12d | ⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) ) | 
						
							| 15 |  | incom | ⊢ ( ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) | 
						
							| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅  ↔  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 18 | 11 17 | orbi12d | ⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ( 𝑎  =  𝑏  ∨  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  ↔  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) ) | 
						
							| 19 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 20 | 19 | a1i | ⊢ ( ⊤  →  ℕ  ⊆  ℝ ) | 
						
							| 21 |  | biidd | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ ) )  →  ( ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  ↔  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) ) | 
						
							| 22 |  | nesym | ⊢ ( 𝑦  ≠  𝑥  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 23 |  | nnre | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ ) | 
						
							| 24 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 25 |  | id | ⊢ ( 𝑥  ≤  𝑦  →  𝑥  ≤  𝑦 ) | 
						
							| 26 |  | leltne | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  <  𝑦  ↔  𝑦  ≠  𝑥 ) ) | 
						
							| 27 | 23 24 25 26 | syl3an | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  <  𝑦  ↔  𝑦  ≠  𝑥 ) ) | 
						
							| 28 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 29 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑥  /  𝑛 ⦌ 𝐴 | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑛 ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 | 
						
							| 31 | 29 30 | nfdif | ⊢ Ⅎ 𝑛 ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 ) | 
						
							| 32 |  | csbeq1a | ⊢ ( 𝑛  =  𝑥  →  𝐴  =  ⦋ 𝑥  /  𝑛 ⦌ 𝐴 ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑛  =  𝑥  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ 𝑥 ) ) | 
						
							| 34 | 33 | iuneq1d | ⊢ ( 𝑛  =  𝑥  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 ) | 
						
							| 35 | 32 34 | difeq12d | ⊢ ( 𝑛  =  𝑥  →  ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 ) ) | 
						
							| 36 | 28 31 35 | csbief | ⊢ ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 ) | 
						
							| 37 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 38 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑦  /  𝑛 ⦌ 𝐴 | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑛 ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 | 
						
							| 40 | 38 39 | nfdif | ⊢ Ⅎ 𝑛 ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) | 
						
							| 41 |  | csbeq1a | ⊢ ( 𝑛  =  𝑦  →  𝐴  =  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑛  =  𝑦  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ 𝑦 ) ) | 
						
							| 43 | 42 | iuneq1d | ⊢ ( 𝑛  =  𝑦  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) | 
						
							| 44 | 41 43 | difeq12d | ⊢ ( 𝑛  =  𝑦  →  ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) ) | 
						
							| 45 | 37 40 44 | csbief | ⊢ ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) | 
						
							| 46 | 36 45 | ineq12i | ⊢ ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) ) | 
						
							| 47 |  | simp1 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ℕ ) | 
						
							| 48 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 49 | 47 48 | eleqtrdi | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 50 |  | simp2 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℕ ) | 
						
							| 51 | 50 | nnzd | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℤ ) | 
						
							| 52 |  | simp3 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  <  𝑦 ) | 
						
							| 53 |  | elfzo2 | ⊢ ( 𝑥  ∈  ( 1 ..^ 𝑦 )  ↔  ( 𝑥  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑦  ∈  ℤ  ∧  𝑥  <  𝑦 ) ) | 
						
							| 54 | 49 51 52 53 | syl3anbrc | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ( 1 ..^ 𝑦 ) ) | 
						
							| 55 |  | nfcv | ⊢ Ⅎ 𝑛 𝑘 | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑛 𝐵 | 
						
							| 57 | 55 56 1 | csbhypf | ⊢ ( 𝑥  =  𝑘  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  =  𝐵 ) | 
						
							| 58 | 57 | equcoms | ⊢ ( 𝑘  =  𝑥  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  =  𝐵 ) | 
						
							| 59 | 58 | eqcomd | ⊢ ( 𝑘  =  𝑥  →  𝐵  =  ⦋ 𝑥  /  𝑛 ⦌ 𝐴 ) | 
						
							| 60 | 59 | ssiun2s | ⊢ ( 𝑥  ∈  ( 1 ..^ 𝑦 )  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ⊆  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) | 
						
							| 61 | 54 60 | syl | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ⊆  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) | 
						
							| 62 | 61 | ssdifssd | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  ⊆  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) | 
						
							| 63 | 62 | ssrind | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  ⊆  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) ) ) | 
						
							| 64 | 46 63 | eqsstrid | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  ⊆  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) ) ) | 
						
							| 65 |  | disjdif | ⊢ ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  =  ∅ | 
						
							| 66 |  | sseq0 | ⊢ ( ( ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  ⊆  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  ∧  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  =  ∅ )  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) | 
						
							| 67 | 64 65 66 | sylancl | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) | 
						
							| 68 | 67 | 3expia | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  <  𝑦  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 69 | 68 | 3adant3 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  <  𝑦  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 70 | 27 69 | sylbird | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑦  ≠  𝑥  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 71 | 22 70 | biimtrrid | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( ¬  𝑥  =  𝑦  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 72 | 71 | orrd | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 ) )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 74 | 8 18 20 21 73 | wlogle | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 75 | 2 74 | mpan | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 76 | 75 | rgen2 | ⊢ ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) | 
						
							| 77 |  | disjors | ⊢ ( Disj  𝑛  ∈  ℕ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ↔  ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) | 
						
							| 78 | 76 77 | mpbir | ⊢ Disj  𝑛  ∈  ℕ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) |