Metamath Proof Explorer


Theorem iundisj2

Description: A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis iundisj.1 ( 𝑛 = 𝑘𝐴 = 𝐵 )
Assertion iundisj2 Disj 𝑛 ∈ ℕ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 iundisj.1 ( 𝑛 = 𝑘𝐴 = 𝐵 )
2 tru
3 eqeq12 ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑎 = 𝑏𝑥 = 𝑦 ) )
4 csbeq1 ( 𝑎 = 𝑥 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
5 csbeq1 ( 𝑏 = 𝑦 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
6 4 5 ineqan12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
7 6 eqeq1d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
8 3 7 orbi12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 𝑎 = 𝑏 ∨ ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) )
9 eqeq12 ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 = 𝑏𝑦 = 𝑥 ) )
10 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
11 9 10 bitrdi ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 = 𝑏𝑥 = 𝑦 ) )
12 csbeq1 ( 𝑎 = 𝑦 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
13 csbeq1 ( 𝑏 = 𝑥 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
14 12 13 ineqan12d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
15 incom ( 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
16 14 15 eqtrdi ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
17 16 eqeq1d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
18 11 17 orbi12d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( 𝑎 = 𝑏 ∨ ( 𝑎 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑏 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) )
19 nnssre ℕ ⊆ ℝ
20 19 a1i ( ⊤ → ℕ ⊆ ℝ )
21 biidd ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) )
22 nesym ( 𝑦𝑥 ↔ ¬ 𝑥 = 𝑦 )
23 nnre ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ )
24 nnre ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ )
25 id ( 𝑥𝑦𝑥𝑦 )
26 leltne ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦 ) → ( 𝑥 < 𝑦𝑦𝑥 ) )
27 23 24 25 26 syl3an ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑥 < 𝑦𝑦𝑥 ) )
28 vex 𝑥 ∈ V
29 nfcsb1v 𝑛 𝑥 / 𝑛 𝐴
30 nfcv 𝑛 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵
31 29 30 nfdif 𝑛 ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 )
32 csbeq1a ( 𝑛 = 𝑥𝐴 = 𝑥 / 𝑛 𝐴 )
33 oveq2 ( 𝑛 = 𝑥 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑥 ) )
34 33 iuneq1d ( 𝑛 = 𝑥 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 )
35 32 34 difeq12d ( 𝑛 = 𝑥 → ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) )
36 28 31 35 csbief 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 )
37 vex 𝑦 ∈ V
38 nfcsb1v 𝑛 𝑦 / 𝑛 𝐴
39 nfcv 𝑛 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵
40 38 39 nfdif 𝑛 ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
41 csbeq1a ( 𝑛 = 𝑦𝐴 = 𝑦 / 𝑛 𝐴 )
42 oveq2 ( 𝑛 = 𝑦 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑦 ) )
43 42 iuneq1d ( 𝑛 = 𝑦 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
44 41 43 difeq12d ( 𝑛 = 𝑦 → ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) )
45 37 40 44 csbief 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
46 36 45 ineq12i ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) )
47 simp1 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℕ )
48 nnuz ℕ = ( ℤ ‘ 1 )
49 47 48 eleqtrdi ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( ℤ ‘ 1 ) )
50 simp2 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℕ )
51 50 nnzd ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℤ )
52 simp3 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 )
53 elfzo2 ( 𝑥 ∈ ( 1 ..^ 𝑦 ) ↔ ( 𝑥 ∈ ( ℤ ‘ 1 ) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦 ) )
54 49 51 52 53 syl3anbrc ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ..^ 𝑦 ) )
55 nfcv 𝑛 𝑘
56 nfcv 𝑛 𝐵
57 55 56 1 csbhypf ( 𝑥 = 𝑘 𝑥 / 𝑛 𝐴 = 𝐵 )
58 57 equcoms ( 𝑘 = 𝑥 𝑥 / 𝑛 𝐴 = 𝐵 )
59 58 eqcomd ( 𝑘 = 𝑥𝐵 = 𝑥 / 𝑛 𝐴 )
60 59 ssiun2s ( 𝑥 ∈ ( 1 ..^ 𝑦 ) → 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
61 54 60 syl ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
62 61 ssdifssd ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ⊆ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 )
63 62 ssrind ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ( 𝑥 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ⊆ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) )
64 46 63 eqsstrid ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) )
65 disjdif ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅
66 sseq0 ( ( ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ∧ ( 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( 𝑦 / 𝑛 𝐴 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ ) → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ )
67 64 65 66 sylancl ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ )
68 67 3expia ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 < 𝑦 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
69 68 3adant3 ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑥 < 𝑦 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
70 27 69 sylbird ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑦𝑥 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
71 22 70 syl5bir ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( ¬ 𝑥 = 𝑦 → ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
72 71 orrd ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
73 72 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦 ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
74 8 18 20 21 73 wlogle ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
75 2 74 mpan ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
76 75 rgen2 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ )
77 disjors ( Disj 𝑛 ∈ ℕ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( 𝑥 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ 𝑦 / 𝑛 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) )
78 76 77 mpbir Disj 𝑛 ∈ ℕ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 )