| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iundisjf.1 | 
							⊢ Ⅎ 𝑘 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							iundisjf.2 | 
							⊢ Ⅎ 𝑛 𝐵  | 
						
						
							| 3 | 
							
								
							 | 
							iundisjf.3 | 
							⊢ ( 𝑛  =  𝑘  →  𝐴  =  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							tru | 
							⊢ ⊤  | 
						
						
							| 5 | 
							
								
							 | 
							eqeq12 | 
							⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( 𝑎  =  𝑏  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑎  =  𝑥  →  ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑏  =  𝑦  →  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							ineqan12d | 
							⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							eqeq1d | 
							⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅  ↔  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							orbi12d | 
							⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ( 𝑎  =  𝑏  ∨  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  ↔  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqeq12 | 
							⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( 𝑎  =  𝑏  ↔  𝑦  =  𝑥 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							equcom | 
							⊢ ( 𝑦  =  𝑥  ↔  𝑥  =  𝑦 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							bitrdi | 
							⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( 𝑎  =  𝑏  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑎  =  𝑦  →  ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑏  =  𝑥  →  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ineqan12d | 
							⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							incom | 
							⊢ ( ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtrdi | 
							⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqeq1d | 
							⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅  ↔  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							orbi12d | 
							⊢ ( ( 𝑎  =  𝑦  ∧  𝑏  =  𝑥 )  →  ( ( 𝑎  =  𝑏  ∨  ( ⦋ 𝑎  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑏  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  ↔  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							nnssre | 
							⊢ ℕ  ⊆  ℝ  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( ⊤  →  ℕ  ⊆  ℝ )  | 
						
						
							| 23 | 
							
								
							 | 
							biidd | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ ) )  →  ( ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  ↔  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							nesym | 
							⊢ ( 𝑦  ≠  𝑥  ↔  ¬  𝑥  =  𝑦 )  | 
						
						
							| 25 | 
							
								
							 | 
							nnre | 
							⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ )  | 
						
						
							| 26 | 
							
								
							 | 
							nnre | 
							⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ )  | 
						
						
							| 27 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  ≤  𝑦  →  𝑥  ≤  𝑦 )  | 
						
						
							| 28 | 
							
								
							 | 
							leltne | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  <  𝑦  ↔  𝑦  ≠  𝑥 ) )  | 
						
						
							| 29 | 
							
								25 26 27 28
							 | 
							syl3an | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  <  𝑦  ↔  𝑦  ≠  𝑥 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 31 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑛 ⦋ 𝑥  /  𝑛 ⦌ 𝐴  | 
						
						
							| 32 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑛 ( 1 ..^ 𝑥 )  | 
						
						
							| 33 | 
							
								32 2
							 | 
							nfiun | 
							⊢ Ⅎ 𝑛 ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵  | 
						
						
							| 34 | 
							
								31 33
							 | 
							nfdif | 
							⊢ Ⅎ 𝑛 ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  | 
						
						
							| 35 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑛  =  𝑥  →  𝐴  =  ⦋ 𝑥  /  𝑛 ⦌ 𝐴 )  | 
						
						
							| 36 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑥  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ 𝑥 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							iuneq1d | 
							⊢ ( 𝑛  =  𝑥  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							difeq12d | 
							⊢ ( 𝑛  =  𝑥  →  ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 ) )  | 
						
						
							| 39 | 
							
								30 34 38
							 | 
							csbief | 
							⊢ ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  | 
						
						
							| 40 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 41 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑛 ⦋ 𝑦  /  𝑛 ⦌ 𝐴  | 
						
						
							| 42 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑛 ( 1 ..^ 𝑦 )  | 
						
						
							| 43 | 
							
								42 2
							 | 
							nfiun | 
							⊢ Ⅎ 𝑛 ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  | 
						
						
							| 44 | 
							
								41 43
							 | 
							nfdif | 
							⊢ Ⅎ 𝑛 ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 )  | 
						
						
							| 45 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑛  =  𝑦  →  𝐴  =  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 )  | 
						
						
							| 46 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑦  →  ( 1 ..^ 𝑛 )  =  ( 1 ..^ 𝑦 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							iuneq1d | 
							⊢ ( 𝑛  =  𝑦  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵  =  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 )  | 
						
						
							| 48 | 
							
								45 47
							 | 
							difeq12d | 
							⊢ ( 𝑛  =  𝑦  →  ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  | 
						
						
							| 49 | 
							
								40 44 48
							 | 
							csbief | 
							⊢ ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  =  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 )  | 
						
						
							| 50 | 
							
								39 49
							 | 
							ineq12i | 
							⊢ ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ( ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  | 
						
						
							| 51 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ℕ )  | 
						
						
							| 52 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							eleqtrdi | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℕ )  | 
						
						
							| 55 | 
							
								54
							 | 
							nnzd | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℤ )  | 
						
						
							| 56 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  <  𝑦 )  | 
						
						
							| 57 | 
							
								
							 | 
							elfzo2 | 
							⊢ ( 𝑥  ∈  ( 1 ..^ 𝑦 )  ↔  ( 𝑥  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑦  ∈  ℤ  ∧  𝑥  <  𝑦 ) )  | 
						
						
							| 58 | 
							
								53 55 56 57
							 | 
							syl3anbrc | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ( 1 ..^ 𝑦 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑘 ( 1 ..^ 𝑦 )  | 
						
						
							| 60 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑘 𝑥  | 
						
						
							| 61 | 
							
								60 1
							 | 
							nfcsbw | 
							⊢ Ⅎ 𝑘 ⦋ 𝑥  /  𝑛 ⦌ 𝐴  | 
						
						
							| 62 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑛 𝑘  | 
						
						
							| 63 | 
							
								62 2 3
							 | 
							csbhypf | 
							⊢ ( 𝑥  =  𝑘  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  =  𝐵 )  | 
						
						
							| 64 | 
							
								63
							 | 
							equcoms | 
							⊢ ( 𝑘  =  𝑥  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  =  𝐵 )  | 
						
						
							| 65 | 
							
								64
							 | 
							eqcomd | 
							⊢ ( 𝑘  =  𝑥  →  𝐵  =  ⦋ 𝑥  /  𝑛 ⦌ 𝐴 )  | 
						
						
							| 66 | 
							
								59 60 61 65
							 | 
							ssiun2sf | 
							⊢ ( 𝑥  ∈  ( 1 ..^ 𝑦 )  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ⊆  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 )  | 
						
						
							| 67 | 
							
								58 66
							 | 
							syl | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ⊆  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 )  | 
						
						
							| 68 | 
							
								67
							 | 
							ssdifssd | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  ⊆  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 )  | 
						
						
							| 69 | 
							
								68
							 | 
							ssrind | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ( ⦋ 𝑥  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑥 ) 𝐵 )  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  ⊆  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) ) )  | 
						
						
							| 70 | 
							
								50 69
							 | 
							eqsstrid | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  ⊆  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							disjdif | 
							⊢ ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  =  ∅  | 
						
						
							| 72 | 
							
								
							 | 
							sseq0 | 
							⊢ ( ( ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  ⊆  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  ∧  ( ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵  ∩  ( ⦋ 𝑦  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑦 ) 𝐵 ) )  =  ∅ )  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  | 
						
						
							| 73 | 
							
								70 71 72
							 | 
							sylancl | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  <  𝑦 )  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  | 
						
						
							| 74 | 
							
								73
							 | 
							3expia | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  <  𝑦  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							3adant3 | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  <  𝑦  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 76 | 
							
								29 75
							 | 
							sylbird | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑦  ≠  𝑥  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 77 | 
							
								24 76
							 | 
							biimtrrid | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( ¬  𝑥  =  𝑦  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							orrd | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑥  ≤  𝑦 ) )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 80 | 
							
								10 20 22 23 79
							 | 
							wlogle | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 81 | 
							
								4 80
							 | 
							mpan | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							rgen2 | 
							⊢ ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ )  | 
						
						
							| 83 | 
							
								
							 | 
							disjors | 
							⊢ ( Disj  𝑛  ∈  ℕ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ↔  ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ( 𝑥  =  𝑦  ∨  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  ∩  ⦋ 𝑦  /  𝑛 ⦌ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 ) )  =  ∅ ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							mpbir | 
							⊢ Disj  𝑛  ∈  ℕ ( 𝐴  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) 𝐵 )  |