Step |
Hyp |
Ref |
Expression |
1 |
|
iundisjf.1 |
⊢ Ⅎ 𝑘 𝐴 |
2 |
|
iundisjf.2 |
⊢ Ⅎ 𝑛 𝐵 |
3 |
|
iundisjf.3 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
4 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ℕ |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
4 5
|
sseqtri |
⊢ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) |
7 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ) |
8 |
7
|
biimpri |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ) |
9 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) |
10 |
6 8 9
|
sylancr |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) |
11 |
|
nfrab1 |
⊢ Ⅎ 𝑛 { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } |
12 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
13 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
14 |
11 12 13
|
nfinf |
⊢ Ⅎ 𝑛 inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑛 ℕ |
16 |
14
|
nfcsb1 |
⊢ Ⅎ 𝑛 ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 |
17 |
16
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 |
18 |
|
csbeq1a |
⊢ ( 𝑛 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → 𝐴 = ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
19 |
18
|
eleq2d |
⊢ ( 𝑛 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
20 |
14 15 17 19
|
elrabf |
⊢ ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ↔ ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ∧ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
21 |
10 20
|
sylib |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ∧ 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) ) |
22 |
21
|
simpld |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ) |
23 |
21
|
simprd |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → 𝑥 ∈ ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
24 |
22
|
nnred |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
25 |
24
|
ltnrd |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ¬ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
26 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ↔ ∃ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝑥 ∈ 𝐵 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
28 |
1
|
nfcri |
⊢ Ⅎ 𝑘 𝑥 ∈ 𝐴 |
29 |
27 28
|
nfrex |
⊢ Ⅎ 𝑘 ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 |
30 |
28 27
|
nfrabw |
⊢ Ⅎ 𝑘 { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } |
31 |
|
nfcv |
⊢ Ⅎ 𝑘 ℝ |
32 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
33 |
30 31 32
|
nfinf |
⊢ Ⅎ 𝑘 inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) |
34 |
33 32 33
|
nfbr |
⊢ Ⅎ 𝑘 inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) |
35 |
24
|
ad2antrr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
36 |
|
elfzouz |
⊢ ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
37 |
36 5
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → 𝑘 ∈ ℕ ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ℕ ) |
39 |
38
|
nnred |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ℝ ) |
40 |
|
simpr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
41 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
42 |
2
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ 𝐵 |
43 |
3
|
eleq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
44 |
41 15 42 43
|
elrabf |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ↔ ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ 𝐵 ) ) |
45 |
38 40 44
|
sylanbrc |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) |
46 |
|
infssuzle |
⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ≤ 𝑘 ) |
47 |
6 45 46
|
sylancr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ≤ 𝑘 ) |
48 |
|
elfzolt2 |
⊢ ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → 𝑘 < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
49 |
48
|
ad2antlr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
50 |
35 39 35 47 49
|
lelttrd |
⊢ ( ( ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ∧ 𝑥 ∈ 𝐵 ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
51 |
50
|
exp31 |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ( 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) → ( 𝑥 ∈ 𝐵 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) ) |
52 |
29 34 51
|
rexlimd |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ( ∃ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝑥 ∈ 𝐵 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
53 |
26 52
|
syl5bi |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 → inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) < inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
54 |
25 53
|
mtod |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) |
55 |
23 54
|
eldifd |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) |
56 |
|
csbeq1 |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ) |
57 |
33
|
nfeq2 |
⊢ Ⅎ 𝑘 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) |
58 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ..^ 𝑚 ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
60 |
|
nfcv |
⊢ Ⅎ 𝑘 ..^ |
61 |
59 60 33
|
nfov |
⊢ Ⅎ 𝑘 ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
62 |
|
oveq2 |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 1 ..^ 𝑚 ) = ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
63 |
|
eqidd |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → 𝐵 = 𝐵 ) |
64 |
57 58 61 62 63
|
iuneq12df |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) |
65 |
56 64
|
difeq12d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) = ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) |
66 |
65
|
eleq2d |
⊢ ( 𝑚 = inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ↔ 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) ) |
67 |
66
|
rspcev |
⊢ ( ( inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℕ ∧ 𝑥 ∈ ( ⦋ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ inf ( { 𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴 } , ℝ , < ) ) 𝐵 ) ) → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
68 |
22 55 67
|
syl2anc |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
69 |
|
nfv |
⊢ Ⅎ 𝑚 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
70 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
71 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 1 ..^ 𝑚 ) |
72 |
71 2
|
nfiun |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 |
73 |
70 72
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
74 |
73
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
75 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
76 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑚 ) ) |
77 |
76
|
iuneq1d |
⊢ ( 𝑛 = 𝑚 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) |
78 |
75 77
|
difeq12d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
79 |
78
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) ) |
80 |
69 74 79
|
cbvrexw |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑚 ) 𝐵 ) ) |
81 |
68 80
|
sylibr |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
82 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) → 𝑥 ∈ 𝐴 ) |
83 |
82
|
reximi |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) → ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ) |
84 |
81 83
|
impbii |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
85 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ 𝐴 ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ 𝐴 ) |
86 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
87 |
84 85 86
|
3bitr4i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ 𝐴 ↔ 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
88 |
87
|
eqriv |
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |