Metamath Proof Explorer


Theorem iundom

Description: An upper bound for the cardinality of an indexed union. C depends on x and should be thought of as C ( x ) . (Contributed by NM, 26-Mar-2006)

Ref Expression
Assertion iundom ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 𝐶 ≼ ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝑥𝐴 ( { 𝑥 } × 𝐶 ) = 𝑥𝐴 ( { 𝑥 } × 𝐶 )
2 simpl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝐴𝑉 )
3 ovex ( 𝐵m 𝐶 ) ∈ V
4 3 rgenw 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ V
5 iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ V ) → 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ V )
6 2 4 5 sylancl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ V )
7 numth3 ( 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ V → 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ dom card )
8 6 7 syl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ dom card )
9 numacn ( 𝐴𝑉 → ( 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ dom card → 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ AC 𝐴 ) )
10 2 8 9 sylc ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 ( 𝐵m 𝐶 ) ∈ AC 𝐴 )
11 simpr ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → ∀ 𝑥𝐴 𝐶𝐵 )
12 reldom Rel ≼
13 12 brrelex1i ( 𝐶𝐵𝐶 ∈ V )
14 13 ralimi ( ∀ 𝑥𝐴 𝐶𝐵 → ∀ 𝑥𝐴 𝐶 ∈ V )
15 iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶 ∈ V ) → 𝑥𝐴 𝐶 ∈ V )
16 14 15 sylan2 ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 𝐶 ∈ V )
17 1 10 11 iundom2g ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) )
18 12 brrelex2i ( 𝑥𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V )
19 numth3 ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ dom card )
20 17 18 19 3syl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card )
21 numacn ( 𝑥𝐴 𝐶 ∈ V → ( ( 𝐴 × 𝐵 ) ∈ dom card → ( 𝐴 × 𝐵 ) ∈ AC 𝑥𝐴 𝐶 ) )
22 16 20 21 sylc ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → ( 𝐴 × 𝐵 ) ∈ AC 𝑥𝐴 𝐶 )
23 1 10 11 22 iundomg ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 𝐶 ≼ ( 𝐴 × 𝐵 ) )