| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
| 3 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐶 ) ∈ V |
| 4 |
3
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V |
| 5 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) |
| 6 |
2 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) |
| 7 |
|
numth3 |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card ) |
| 9 |
|
numacn |
⊢ ( 𝐴 ∈ 𝑉 → ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ AC 𝐴 ) ) |
| 10 |
2 8 9
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ AC 𝐴 ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) |
| 12 |
|
reldom |
⊢ Rel ≼ |
| 13 |
12
|
brrelex1i |
⊢ ( 𝐶 ≼ 𝐵 → 𝐶 ∈ V ) |
| 14 |
13
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
| 15 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
| 16 |
14 15
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
| 17 |
1 10 11
|
iundom2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 18 |
12
|
brrelex2i |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 19 |
|
numth3 |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ dom card ) |
| 20 |
17 18 19
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
| 21 |
|
numacn |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ( ( 𝐴 × 𝐵 ) ∈ dom card → ( 𝐴 × 𝐵 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 22 |
16 20 21
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 23 |
1 10 11 22
|
iundomg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ ( 𝐴 × 𝐵 ) ) |