Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
3 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐶 ) ∈ V |
4 |
3
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V |
5 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) |
6 |
2 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) |
7 |
|
numth3 |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card ) |
9 |
|
numacn |
⊢ ( 𝐴 ∈ 𝑉 → ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ AC 𝐴 ) ) |
10 |
2 8 9
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ AC 𝐴 ) |
11 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) |
12 |
|
reldom |
⊢ Rel ≼ |
13 |
12
|
brrelex1i |
⊢ ( 𝐶 ≼ 𝐵 → 𝐶 ∈ V ) |
14 |
13
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
15 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
16 |
14 15
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
17 |
1 10 11
|
iundom2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) ) |
18 |
12
|
brrelex2i |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
19 |
|
numth3 |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ dom card ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
21 |
|
numacn |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ( ( 𝐴 × 𝐵 ) ∈ dom card → ( 𝐴 × 𝐵 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
22 |
16 20 21
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶 ) |
23 |
1 10 11 22
|
iundomg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ ( 𝐴 × 𝐵 ) ) |