Step |
Hyp |
Ref |
Expression |
1 |
|
iunfo.1 |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
2 |
|
iundomg.2 |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ) |
3 |
|
iundomg.3 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) |
4 |
|
brdomi |
⊢ ( 𝐵 ≼ 𝐶 → ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐶 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐶 ) |
6 |
|
f1f |
⊢ ( 𝑔 : 𝐵 –1-1→ 𝐶 → 𝑔 : 𝐵 ⟶ 𝐶 ) |
7 |
|
reldom |
⊢ Rel ≼ |
8 |
7
|
brrelex2i |
⊢ ( 𝐵 ≼ 𝐶 → 𝐶 ∈ V ) |
9 |
7
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝐶 → 𝐵 ∈ V ) |
10 |
8 9
|
elmapd |
⊢ ( 𝐵 ≼ 𝐶 → ( 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐶 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐶 ) ) |
12 |
6 11
|
syl5ibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 : 𝐵 –1-1→ 𝐶 → 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) ) ) |
13 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐶 ↑m 𝐵 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝐶 ↑m 𝐵 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) |
15 |
14
|
sseld |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 ∈ ( 𝐶 ↑m 𝐵 ) → 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) ) |
16 |
12 15
|
syld |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 : 𝐵 –1-1→ 𝐶 → 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ) ) |
17 |
16
|
ancrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( 𝑔 : 𝐵 –1-1→ 𝐶 → ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) ) |
18 |
17
|
eximdv |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ( ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐶 → ∃ 𝑔 ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) ) |
19 |
5 18
|
mpd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ∃ 𝑔 ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) |
20 |
|
df-rex |
⊢ ( ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ↔ ∃ 𝑔 ( 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 : 𝐵 –1-1→ 𝐶 ) ) |
21 |
19 20
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶 ) → ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ) |
22 |
21
|
ralimiaa |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ) |
23 |
3 22
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ) |
24 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 |
25 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑔 |
27 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
29 |
26 27 28
|
nff1 |
⊢ Ⅎ 𝑥 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
30 |
25 29
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
31 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
32 |
|
f1eq2 |
⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ( 𝑔 : 𝐵 –1-1→ 𝐶 ↔ 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
33 |
31 32
|
syl |
⊢ ( 𝑥 = 𝑦 → ( 𝑔 : 𝐵 –1-1→ 𝐶 ↔ 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
34 |
33
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ↔ ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
35 |
24 30 34
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : 𝐵 –1-1→ 𝐶 ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
36 |
23 35
|
sylib |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
37 |
|
f1eq1 |
⊢ ( 𝑔 = ( 𝑓 ‘ 𝑦 ) → ( 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
38 |
37
|
acni3 |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑔 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) 𝑔 : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
39 |
2 36 38
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
40 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 |
41 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) |
42 |
41 27 28
|
nff1 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
43 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) |
44 |
|
f1eq1 |
⊢ ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ) ) |
45 |
43 44
|
syl |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ) ) |
46 |
|
f1eq2 |
⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ( ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
47 |
31 46
|
syl |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑦 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
48 |
45 47
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
49 |
40 42 48
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
50 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
51 |
|
acnrcl |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 → 𝐴 ∈ V ) |
52 |
2 51
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
53 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) |
54 |
8
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 → 𝐶 ∈ V ) |
55 |
53 54
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) → 𝐶 ∈ V ) |
56 |
55
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 → ( 𝐴 ≠ ∅ → 𝐶 ∈ V ) ) |
57 |
3 56
|
syl |
⊢ ( 𝜑 → ( 𝐴 ≠ ∅ → 𝐶 ∈ V ) ) |
58 |
|
xpexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 × 𝐶 ) ∈ V ) |
59 |
52 57 58
|
syl6an |
⊢ ( 𝜑 → ( 𝐴 ≠ ∅ → ( 𝐴 × 𝐶 ) ∈ V ) ) |
60 |
50 59
|
syl5bir |
⊢ ( 𝜑 → ( ¬ 𝐴 = ∅ → ( 𝐴 × 𝐶 ) ∈ V ) ) |
61 |
|
xpeq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) = ( ∅ × 𝐶 ) ) |
62 |
|
0xp |
⊢ ( ∅ × 𝐶 ) = ∅ |
63 |
|
0ex |
⊢ ∅ ∈ V |
64 |
62 63
|
eqeltri |
⊢ ( ∅ × 𝐶 ) ∈ V |
65 |
61 64
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) ∈ V ) |
66 |
60 65
|
pm2.61d2 |
⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ V ) |
67 |
1
|
eleq2i |
⊢ ( 𝑦 ∈ 𝑇 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
68 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) |
69 |
67 68
|
bitri |
⊢ ( 𝑦 ∈ 𝑇 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) |
70 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) |
71 |
|
xp1st |
⊢ ( 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 1st ‘ 𝑦 ) ∈ { 𝑥 } ) |
72 |
71
|
ad2antll |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) ∈ { 𝑥 } ) |
73 |
|
elsni |
⊢ ( ( 1st ‘ 𝑦 ) ∈ { 𝑥 } → ( 1st ‘ 𝑦 ) = 𝑥 ) |
74 |
72 73
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) = 𝑥 ) |
75 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝑥 ∈ 𝐴 ) |
76 |
74 75
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝐴 ) |
77 |
74
|
fveq2d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
78 |
77
|
fveq1d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ‘ ( 2nd ‘ 𝑦 ) ) ) |
79 |
|
f1f |
⊢ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑓 ‘ 𝑥 ) : 𝐵 ⟶ 𝐶 ) |
80 |
79
|
ad2antrl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 𝑓 ‘ 𝑥 ) : 𝐵 ⟶ 𝐶 ) |
81 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd ‘ 𝑦 ) ∈ 𝐵 ) |
82 |
81
|
ad2antll |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝐵 ) |
83 |
80 82
|
ffvelrnd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ‘ ( 2nd ‘ 𝑦 ) ) ∈ 𝐶 ) |
84 |
78 83
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) ∈ 𝐶 ) |
85 |
76 84
|
opelxpd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) |
86 |
85
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) |
87 |
70 86
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) |
88 |
87
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) ) |
89 |
69 88
|
syl5bi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑦 ∈ 𝑇 → 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ∈ ( 𝐴 × 𝐶 ) ) ) |
90 |
|
fvex |
⊢ ( 1st ‘ 𝑦 ) ∈ V |
91 |
|
fvex |
⊢ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) ∈ V |
92 |
90 91
|
opth |
⊢ ( 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) 〉 ↔ ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
93 |
|
simpr |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) |
94 |
93
|
fveq2d |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ) |
95 |
94
|
fveq1d |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) |
96 |
95
|
eqeq2d |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
97 |
|
djussxp |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V ) |
98 |
1 97
|
eqsstri |
⊢ 𝑇 ⊆ ( 𝐴 × V ) |
99 |
|
simprl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑦 ∈ 𝑇 ) |
100 |
98 99
|
sselid |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑦 ∈ ( 𝐴 × V ) ) |
101 |
100
|
adantr |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → 𝑦 ∈ ( 𝐴 × V ) ) |
102 |
|
xp1st |
⊢ ( 𝑦 ∈ ( 𝐴 × V ) → ( 1st ‘ 𝑦 ) ∈ 𝐴 ) |
103 |
101 102
|
syl |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 1st ‘ 𝑦 ) ∈ 𝐴 ) |
104 |
|
simpll |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ) |
105 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) |
106 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 |
107 |
105 106 28
|
nff1 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 |
108 |
|
fveq2 |
⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ) |
109 |
|
f1eq1 |
⊢ ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ) ) |
110 |
108 109
|
syl |
⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ) ) |
111 |
|
csbeq1a |
⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → 𝐵 = ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
112 |
|
f1eq2 |
⊢ ( 𝐵 = ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
113 |
111 112
|
syl |
⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
114 |
110 113
|
bitrd |
⊢ ( 𝑥 = ( 1st ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ↔ ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
115 |
107 114
|
rspc |
⊢ ( ( 1st ‘ 𝑦 ) ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) ) |
116 |
103 104 115
|
sylc |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) |
117 |
106
|
nfel2 |
⊢ Ⅎ 𝑥 ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 |
118 |
74
|
eqcomd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝑥 = ( 1st ‘ 𝑦 ) ) |
119 |
118 111
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝐵 = ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
120 |
82 119
|
eleqtrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
121 |
120
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) |
122 |
117 121
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
123 |
70 122
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
124 |
123
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) |
125 |
69 124
|
syl5bi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( 𝑦 ∈ 𝑇 → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) |
126 |
125
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑦 ∈ 𝑇 ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
127 |
126
|
adantrr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
128 |
127
|
adantr |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
129 |
125
|
ralrimiv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ∀ 𝑦 ∈ 𝑇 ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
130 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) |
131 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) |
132 |
131
|
csbeq1d |
⊢ ( 𝑦 = 𝑧 → ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
133 |
130 132
|
eleq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ↔ ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) ) |
134 |
133
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑇 ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ∧ 𝑧 ∈ 𝑇 ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
135 |
129 134
|
sylan |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ 𝑧 ∈ 𝑇 ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
136 |
135
|
adantrl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
137 |
136
|
adantr |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
138 |
93
|
csbeq1d |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 = ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
139 |
137 138
|
eleqtrrd |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) |
140 |
|
f1fveq |
⊢ ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) : ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ∧ ( ( 2nd ‘ 𝑦 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ∧ ( 2nd ‘ 𝑧 ) ∈ ⦋ ( 1st ‘ 𝑦 ) / 𝑥 ⦌ 𝐵 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) |
141 |
116 128 139 140
|
syl12anc |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) |
142 |
96 141
|
bitr3d |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) ∧ ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ↔ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) |
143 |
142
|
pm5.32da |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↔ ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ) ) |
144 |
|
simprr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑧 ∈ 𝑇 ) |
145 |
98 144
|
sselid |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑧 ∈ ( 𝐴 × V ) ) |
146 |
|
xpopth |
⊢ ( ( 𝑦 ∈ ( 𝐴 × V ) ∧ 𝑧 ∈ ( 𝐴 × V ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ↔ 𝑦 = 𝑧 ) ) |
147 |
100 145 146
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑧 ) ) ↔ 𝑦 = 𝑧 ) ) |
148 |
143 147
|
bitrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 1st ‘ 𝑦 ) = ( 1st ‘ 𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↔ 𝑦 = 𝑧 ) ) |
149 |
92 148
|
syl5bb |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) 〉 ↔ 𝑦 = 𝑧 ) ) |
150 |
149
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( 〈 ( 1st ‘ 𝑦 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 1st ‘ 𝑧 ) , ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) 〉 ↔ 𝑦 = 𝑧 ) ) ) |
151 |
89 150
|
dom2d |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → ( ( 𝐴 × 𝐶 ) ∈ V → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
152 |
66 151
|
syl5com |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) : 𝐵 –1-1→ 𝐶 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
153 |
49 152
|
syl5bir |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
154 |
153
|
adantld |
⊢ ( 𝜑 → ( ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
155 |
154
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) : ⦋ 𝑦 / 𝑥 ⦌ 𝐵 –1-1→ 𝐶 ) → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) ) |
156 |
39 155
|
mpd |
⊢ ( 𝜑 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) |